Переброс части или всего кристалла в двойниковое положение у металлов осуществляется послойным скольжением атомных плоскостей. Каждый атомный слой последовательно смещается на долю межатомного расстояния, при этом все атомы в двойниковой области перемещаются на длину, пропорциональную их расстоянию от плоскости Д. (плоскости зеркального отражения). У других кристаллов этот процесс сложнее, например у кальцита CaCO3
добавляется вращение групп CO3
. Механические двойники образуются в тех случаях, когда деформация скольжением в направлении приложенной силы затруднена (см. Пластичность
).
Д. может сопровождаться изменением размеров и формы кристалла, что характерно, например, для CaCO3
. Д. CaCO3
можно осуществить нажатием лезвия (рис. 2
, а),
при этом в двойниковое положение переходит участок в правой части кристалла (рис. 2
, б). Д. с изменением формы имеют место у всех металлов, полупроводников — германия
, кремния
и у многих др. кристаллов. Другой вид Д., не вызывающий изменения формы кристалла, наблюдается, например, у кварца и триглицинсульфата. Если однородность структуры монокристалла нарушена многочисленными двойниковыми образованиями, то его называют полисинтетическим двойником (рис. 3
). В кристаллах сегнетоэлектриков двойниковые образования являются одновременно сегнетоэлектрическими доменами
,
причём они характеризуются различными оптическими свойствами (рис. 4
). Д. сильно влияет на механические свойства кристаллов: прочность
, пластичность
, хрупкость
,
а также на электрические, магнитные и оптические свойства. Д. ухудшает качество полупроводниковых приборов
.
Закономерности механической Д. кристаллов используются в геологии для диагностики минералов и для выяснения условий образования горных пород. Распределение двойниковых прослоек в породообразующих минералах позволяет характеризовать воздействия, которым подвергалась порода. Механические Д. учитывается геологами и петрографами при анализе течения горных пород после их деформирования.
М. В. Классен-Неклюдова.
Рис. 2б. Фотография сдвойникованного кальцита.
Рис. 3. Слева — полисинтетический двойник сегнетовой соли; справа — полисинтетический двойник триглицинсульфата, выявленный травлением (фотография в отражённом свете).
Рис. 4. Схема расположения оптической индикатриссы: а
— в ромбическом кристалле сегнетовой соли; б
, в
— в компонентах двойника, вытянутых вдоль осей с
и b
моноклинного кристалла.Рис. 2а. Двойникование кальцита нажатием лезвия (метод Баумгауера).
Рис. 1. Двойники роста.
Двойное гражданство
Двойно'е гражда'нство,
см. Бипатриды
.Двойное лучепреломление
Двойно'е лучепреломле'ние,
расщепление пучка света в анизотропной среде (например, в кристалле) на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Д. л. впервые обнаружено и описано профессором Копенгагенского университета Э. Бартолином в 1669 в кристалле исландского шпата
.
Если световой пучок падает перпендикулярно к поверхности кристалла, то он распадается на 2 пучка, один из которых продолжает путь без преломления, как и в изотропной среде, другой же отклоняется в сторону, нарушая обычный закон преломления света (рис.). Соответственно этому лучи первого пучка называются обыкновенными, второго — необыкновенными. Угол, образуемый обыкновенным и необыкновенным лучами, называется углом Д. л. Если в случае перпендикулярного падения пучка поворачивать кристалл вокруг пучка, то след обыкновенного луча остаётся на месте, в центре, а след необыкновенного луча вращается по кругу. Д. л. можно наблюдать и при наклонном падении пучка света на поверхность кристалла. В исландском шпате и некоторых др. кристаллах существует только одно направление, вдоль которого не происходит Д. л. Оно называется оптической осью кристалла, а такие кристаллы — одноосными (см. также Кристаллооптика
).
Направление колебаний электрического вектора у необыкновенного луча лежит в плоскости главного сечения (проходящей через оптическую ось и световой луч), которая является плоскостью поляризации. Нарушение законов преломления в необыкновенном луче связано с тем, что скорость распространения необыкновенной волны, а, следовательно, и её показатель преломления nе
зависят от направления. Для обыкновенной волны, поляризованной в плоскости, перпендикулярной главному сечению, показатель преломления nо
одинаков для всех направлений. Если из точки О (см. рис.
) откладывать векторы, длины которых равны значениям nе
и nо
в различных направлениях, то геометрические места концов этих векторов образуют сферу для обыкновенной волны и эллипсоид для необыкновенной (поверхности показателей преломления).