Читаем Большая Советская Энциклопедия (ФА) полностью

  Для Ф. п. II рода характерно отсутствие скачков плотности, концентрации, теплоты перехода. Но точно такая же картина наблюдается и в критической точке на кривой Ф. п. I рода (см. Критические явления ). Сходство оказывается очень глубоким. Вблизи критической точки состояние вещества можно характеризовать величиной, играющей роль параметра порядка. Например, в случае критической точки на кривой равновесия жидкость – пар это – отклонение плотности от среднего значения. При движении по критической изохоре со стороны высоких температур газ однороден, и эта величина равна нулю. Ниже критической температуры , вещество расслаивается на две фазы, в каждой из которых отклонение плотности от критической не равно нулю. Поскольку вблизи точки Ф. п. II рода фазы мало отличаются друг от друга, возможно образование зародышей большого размера одной фазы в другой (флуктуации ), точно так же, как вблизи критической точки. С этим связаны многие критические явления при Ф. п. II рода: бесконечный рост магнитной восприимчивости ферромагнетиков и диэлектрической постоянной сегнетоэлектриков (аналогом является рост сжимаемости вблизи критической точки жидкость – пар), бесконечный рост теплоёмкости, аномальное рассеяние электромагнитных волн [световых в жидкости и паре (см. Опалесценция критическая ), рентгеновских в твёрдых телах], нейтронов в ферромагнетиках. Существенно меняются и динамические явления, что связано с очень медленным рассасыванием образовавшихся флуктуаций. Например, вблизи критической точки жидкость – пар сужается линия рэлеевского рассеяния света , вблизи Кюри точки ферромагнетиков и Нееля точки антиферромагнетиков замедляется спиновая диффузия (см. Спиновые волны ) и т.д. Средний размер флуктуаций (радиус корреляции) R растет по мере приближения к точке Ф. п. II рода и становится в этой точке бесконечно большим.

  Современные достижения теории Ф. п. II рода и критических явлений основаны на гипотезе подобия. Предполагается, что если принять R за единицу измерения длины, а среднюю величину параметра порядка ячейки с ребром R – за единицу измерения параметра порядка, то вся картина флуктуаций не будет зависеть ни от близости к точке перехода, ни от конкретного вещества. Все термодинамические величины являются степенными функциями R. Показатели степеней называют критическими размерностями (индексами). Они не зависят от конкретного вещества и определяются лишь характером параметра порядка. Например, размерности в точке Кюри изотропного материала, параметром порядка которого является вектор намагниченности, отличаются от размерностей в критической точке жидкость – пар или в точке Кюри одноосного магнетика, где параметр порядка – скалярная величина.

  Вблизи точки перехода уравнение состояния имеет характерный вид закона соответственных состояний . Например, вблизи критической точки жидкость – пар отношение  зависит только от  (здесь r- плотность, rк - критическая плотность, rж – плотность жидкости, rг – плотность газа, p – давление, pk – критическое давление, Кт – изотермическая сжимаемость ), причём вид зависимости при подходящем выборе масштаба один и тот же для всех жидкостей (см. Критические явления ).

  Достигнуты большие успехи в теоретическом вычислении критических размерностей и уравнений состояния в хорошем согласии с экспериментальными данными. Приближенные значения критических размерностей приведены в таблице.

  Таблица критических размерностей термодинамических и кинетических величин

Величина Т - Тk Теплоемкость Восприимчивость* Магнитное поле Магнитный момент Ширина линии рэлеевского рассеяния
Размерность -3 /2 3 /16 2 -5 /2 -1 /2 -3 /2

  * Изменение плотности с давлением, намагниченности с напряжённостью магнитного поля и др. Tk критическая температура.

  Дальнейшее развитие теории Ф. п. II рода связано с применением методов квантовой теории поля, в особенности метода ренормализационной группы. Этот метод позволяет, в принципе, найти критические индексы с любой требуемой точностью.

  Деление Ф. п. на два рода несколько условно, т.к. бывают Ф. п. I рода с малыми скачками теплоёмкости и др. величин и малыми теплотами перехода при сильно развитых флуктуациях. Ф. п. – коллективное явление, происходящее при строго определённых значениях температуры и др. величин только в системе, имеющей в пределе сколь угодно большое число частиц.

Перейти на страницу:

Похожие книги

100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Природа и животные / Энциклопедии / Словари и Энциклопедии / Публицистика