Организация труда. Основная форма организации труда на Ф. ж. – постоянная производственная бригада. Животноводческие бригады могут быть отраслевыми (обслуживать разные группы животных одного вида), специализированными (обслуживать одну группу животных) и комплексными (выполнять все работы по уходу за животными). На крупных свиноводческих фермах распространена раздельно-цеховая организация производства и труда (в соответствии с размещением групп животных по цехам фермы). На овцеводческих фермах животных распределяют по отарам, которые обслуживают чабанские бригады. Формы внутрибригадной организации труда: индивидуальная – определённую группу животных обслуживает один работник (на мелких фермах), и групповая – поголовье закрепляют за группой (звеном) животноводов (на фермах промышленного типа). Труд работников Ф. ж. оплачивается в соответствии с их квалификацией, объёмом выполненных работ, количеством и качеством полученной продукции (см. Заработная плата
, Оплата труда в колхозах
).
На Ф. ж. механизируют транспортировку, приготовление и раздачу кормов, водоснабжение и поение животных, доение коров, первичную обработку и переработку молока, стрижку овец, сбор яиц, уборку навоза из животноводческих помещений, доставку его в навозохранилища и др. рабочие процессы (см. Сельское хозяйство
).
В условиях привязного содержания коров доят в стойлах или на доильных установках; при беспривязном и беспривязно-боксовом – в доильных залах на стационарных групповых установках («Елочка», «Тандем», «Карусель» и др.). На механизированных фермах применяют двукратное доение коров, что обеспечивает рациональное использование доильных установок и рост производительности труда. Для раздачи кормов и уборки навоза применяют стационарные средства механизации или тракторы. На крупных Ф. ж. с комплексной механизацией рабочих процессов действует система взаимосвязанных и согласованных по производительности электрифицированных и автоматизированных поточных линий доения коров и обработки молока, приготовления и раздачи кормов, удаления навоза и др. Лит.:
Материалы XXV съезда КПСС, М., 1976; Проблемы аграрной политики КПСС на современном этапе, т. 1–2, М., 1975; Организация и планирование производства в сельскохозяйственных предприятиях, М., 1974; Организация производства в совхозах и колхозах, М., 1973. С. И. Грядов.
Ферма малая теорема
Ферма' ма'лая теоре'ма,
одна из основных теорем теории чисел, состоящая в том, что если р –
простое число и а –
целое число, не делящееся на р,
то ap-1 –
1 делится на р,
т. е. ap-1
o1(modp
).
Теорему высказал без доказательства П. Ферма,
первое доказательство дал Л. Эйлер
.Ферма принцип
Ферма' при'нцип,
основной принцип геометрической оптики
.
Простейшая форма Ф. п. – утверждение, что луч света всегда распространяется в пространстве между двумя точками по тому пути, по которому время его прохождения меньше, чем по любому из всех др. путей, соединяющих эти точки. Время прохождения светом расстояния l
, заполненного средой с преломления показателем
n
, пропорционально оптической длине пути
S
; S =
1•n
для однородной среды, а при переменном n .
Поэтому можно сказать, что Ф. п. есть принцип наименьшей оптической длины пути. В первоначальной формулировке самого П. Ферма
(около 1660) Ф. п. имел смысл наиболее общего закона распространения света, из которого следовали все (к тому времени уже известные) законы геометрической оптики: для однородной среды он приводит к закону прямолинейности светового луча (в соответствии с геометрическим положением о том, что прямая есть кратчайшее расстояние между двумя точками), а для случая падения луча на границу различных сред из Ф. п. можно получить законы отражения света
и преломления света
.
В более строгой формулировке Ф. п. представляет собой вариационный принцип, утверждающий, что реальный луч света распространяется от одной точки к другой по линии, по которой время его прохождения экстремально или одинаково по сравнению с временами прохождения по всем др. линиям, соединяющим эти точки. Это означает, что оптическая длина пути луча может быть не только минимальной, но и максимальной либо равной всем остальным возможным путям, соединяющим указанные точки. Примерами минимального пути служат упомянутые распространение света в однородной среде и прохождение светом границы двух сред с разными показателями преломления n.
Все три случая (минимальности, максимальности и стационарности пути) можно проиллюстрировать, анализируя отражение луча света от вогнутого зеркала (рис.
). К принципу Ферма: действительный путь света соответствует экстремальному времени распространения.