Читаем Большая Советская Энциклопедия (ФЕ) полностью

  Организация труда. Основная форма организации труда на Ф. ж. – постоянная производственная бригада. Животноводческие бригады могут быть отраслевыми (обслуживать разные группы животных одного вида), специализированными (обслуживать одну группу животных) и комплексными (выполнять все работы по уходу за животными). На крупных свиноводческих фермах распространена раздельно-цеховая организация производства и труда (в соответствии с размещением групп животных по цехам фермы). На овцеводческих фермах животных распределяют по отарам, которые обслуживают чабанские бригады. Формы внутрибригадной организации труда: индивидуальная – определённую группу животных обслуживает один работник (на мелких фермах), и групповая – поголовье закрепляют за группой (звеном) животноводов (на фермах промышленного типа). Труд работников Ф. ж. оплачивается в соответствии с их квалификацией, объёмом выполненных работ, количеством и качеством полученной продукции (см. Заработная плата , Оплата труда в колхозах ).

  На Ф. ж. механизируют транспортировку, приготовление и раздачу кормов, водоснабжение и поение животных, доение коров, первичную обработку и переработку молока, стрижку овец, сбор яиц, уборку навоза из животноводческих помещений, доставку его в навозохранилища и др. рабочие процессы (см. Сельское хозяйство ). В условиях привязного содержания коров доят в стойлах или на доильных установках; при беспривязном и беспривязно-боксовом – в доильных залах на стационарных групповых установках («Елочка», «Тандем», «Карусель» и др.). На механизированных фермах применяют двукратное доение коров, что обеспечивает рациональное использование доильных установок и рост производительности труда. Для раздачи кормов и уборки навоза применяют стационарные средства механизации или тракторы. На крупных Ф. ж. с комплексной механизацией рабочих процессов действует система взаимосвязанных и согласованных по производительности электрифицированных и автоматизированных поточных линий доения коров и обработки молока, приготовления и раздачи кормов, удаления навоза и др.

  Лит.: Материалы XXV съезда КПСС, М., 1976; Проблемы аграрной политики КПСС на современном этапе, т. 1–2, М., 1975; Организация и планирование производства в сельскохозяйственных предприятиях, М., 1974; Организация производства в совхозах и колхозах, М., 1973.

  С. И. Грядов.

Ферма малая теорема

Ферма' ма'лая теоре'ма, одна из основных теорем теории чисел, состоящая в том, что если р – простое число и а – целое число, не делящееся на р, то ap-1 1 делится на р, т. е. ap-1 o1(modp ). Теорему высказал без доказательства П. Ферма, первое доказательство дал Л. Эйлер .

Ферма принцип

Ферма' при'нцип, основной принцип геометрической оптики . Простейшая форма Ф. п. – утверждение, что луч света всегда распространяется в пространстве между двумя точками по тому пути, по которому время его прохождения меньше, чем по любому из всех др. путей, соединяющих эти точки. Время прохождения светом расстояния l , заполненного средой с преломления показателем n , пропорционально оптической длине пути S ; S = 1•n для однородной среды, а при переменном n . Поэтому можно сказать, что Ф. п. есть принцип наименьшей оптической длины пути. В первоначальной формулировке самого П. Ферма (около 1660) Ф. п. имел смысл наиболее общего закона распространения света, из которого следовали все (к тому времени уже известные) законы геометрической оптики: для однородной среды он приводит к закону прямолинейности светового луча (в соответствии с геометрическим положением о том, что прямая есть кратчайшее расстояние между двумя точками), а для случая падения луча на границу различных сред из Ф. п. можно получить законы отражения света и преломления света . В более строгой формулировке Ф. п. представляет собой вариационный принцип, утверждающий, что реальный луч света распространяется от одной точки к другой по линии, по которой время его прохождения экстремально или одинаково по сравнению с временами прохождения по всем др. линиям, соединяющим эти точки. Это означает, что оптическая длина пути луча может быть не только минимальной, но и максимальной либо равной всем остальным возможным путям, соединяющим указанные точки. Примерами минимального пути служат упомянутые распространение света в однородной среде и прохождение светом границы двух сред с разными показателями преломления n. Все три случая (минимальности, максимальности и стационарности пути) можно проиллюстрировать, анализируя отражение луча света от вогнутого зеркала (рис. ).

  К принципу Ферма: действительный путь света соответствует экстремальному времени распространения.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже