Современная Ф. содержит небольшое число фундаментальных физических теорий, охватывающих все разделы Ф. Эти теории представляют собой квинтэссенцию знаний о характере физических процессов и явлений, приближённое, но наиболее полное отображение различных форм движения материи в природе.
II. Основные этапы развития физики
Становление физики (до 17 в.).
Физические явления окружающего мира издавна привлекали внимание людей. Попытки причинного объяснения этих явлений предшествовали созданию Ф. в современном смысле этого слова. В греко-римском мире (6 в. до н. э. – 2 в. н. э.) впервые зародились идеи об атомном строении вещества (Демокрит
, Эпикур
, Лукреций
),
была разработана геоцентрическая система мира (Птолемей
), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма. Итог приобретённых знаний в 4 в. до н. э. был подведён Аристотелем
.
Физика Аристотеля включала отдельные верные положения, но в то же время в ней отсутствовали многие прогрессивные идеи предшественников, в частности атомная гипотеза. Признавая значение опыта, Аристотель не считал его главным критерием достоверности знания, отдавая предпочтение умозрительным представлениям. В средние века учение Аристотеля, канонизированное церковью, надолго затормозило развитие науки.
Наука возродилась лишь в 15–16 вв. в борьбе со схоластизированным учением Аристотеля. В середине 16 в. Н. Коперник
выдвинул гелиоцентрическую систему мира
и положил начало освобождению естествознания от теологии. Потребности производства, развитие ремёсел, судоходства и артиллерии стимулировали научные исследования, опирающиеся на опыт. Однако в 15–16 вв. экспериментальные исследования носили в основном случайный характер. Лишь в 17 в. началось систематическое применение экспериментального метода в Ф., и это привело к созданию первой фундаментальной физической теории – классической механики Ньютона. Формирование физики как науки (начало 17 – конец 18 вв.).
Развитие Ф. как науки в современном смысле этого слова берёт начало с трудов Г. Галилея
(1-я половина 17 в.), который понял необходимость математического описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в механике Аристотеля, а ускорение тела. Это утверждение представляло собой первую формулировку закона инерции. Галилей открыл принцип относительности в механике (см. Галилея принцип относительности
),
доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника. Значительные результаты были получены им и в др. областях Ф. Он построил зрительную трубу с большим увеличением и сделал с её помощью ряд астрономических открытий (горы на Луне, спутники Юпитера и др.). Количественное изучение тепловых явлений началось после изобретения Галилсем первого термометра. В 1-й половине 17 в. началось успешное изучение газов. Ученик Галилея Э. Торричелли
установил существование атмосферного давления и создал первый барометр. Р. Бойль
и Э. Мариотт
исследовали упругость газов и сформулировали первый газовый закон, носящий их имя. В. Снеллиус
и Р. Декарт
открыли закон преломления света. В это же время был создан микроскоп. Значительный шаг вперёд в изучении магнитных явлений был сделан в самом начале 17 в. У. Гильбертом
.
Он доказал, что Земля является большим магнитом, и первый строго разграничил электрические и магнитные явления. Основным достижением Ф. 17 в. было создание классической механики. Развивая идеи Галилея, Х. Гюйгенса
и др. предшественников, И. Ньютон
в труде «Математические начала натуральной философии» (1687) сформулировал все основные законы этой науки (см. Ньютона законы механики
).
При построении классической механики впервые был воплощён идеал научной теории, существующий и поныне. С появлением механики Ньютона было окончательно понято, что задача науки состоит в отыскании наиболее общих количественно формулируемых законов природы.