При больших скоростях движения любая физическая теория должна удовлетворять требованиям теории относительности, т. е. быть релятивистски-инвариантной. Законы теории относительности определяют преобразования при переходе от одной инерциальной системы отсчёта к другой не только координат и времени, но и любой физической величины. Эта теория вытекает из принципов инвариантности, или симметрии в Ф. (см. Симметрия
в физике). Общая теория относительности
(теория тяготения). Из четырёх типов фундаментальных взаимодействий – гравитационных, электромагнитных, сильных и слабых – первыми были открыты гравитационные взаимодействия, или силы тяготения. На протяжении более двухсот лет никаких изменений в основы теории гравитации, сформулированной Ньютоном, внесено не было. Почти все следствия теории находились в полном согласии с опытом. Во 2-м десятилетии 20 в. классическая теория тяготения была революционным образом преобразована Эйнштейном. Теория тяготения Эйнштейна, в отличие от всех прочих теорий, была создана без стимулирующей роли новых экспериментов, путём логического развития принципа относительности применительно к гравитационным взаимодействиям, и получила название общей теории относительности. Эйнштейн по-новому интерпретировал установленный ещё Галилеем факт равенства гравитационной и инертной масс (см. Масса
).
Это равенство означает, что тяготение одинаковым образом искривляет пути всех тел. Поэтому тяготение можно рассматривать как искривление самого пространства-времени. Теория Эйнштейна вскрыла глубокую связь между геометрией пространства-времени и распределением и движением масс. Компоненты т. н. метрического тензора, характеризующие метрику пространства-времени
,
одновременно являются потенциалами гравитационного поля, т. е. определяют состояние гравитационного поля. Гравитационное поле описывается нелинейными уравнениями Эйнштейна. В приближении слабых полей из них вытекает существование гравитационных волн, пока не обнаруженных экспериментально (см. Гравитационное излучение
).
Гравитационные силы – самые слабые из фундаментальных сил в природе. Для протонов они примерно в 1036
раз слабее электромагнитных. В современной теории элементарных частиц гравитационные силы не учитываются, т.к. полагают, что они не играют заметной роли. Роль гравитационных сил становится решающей при взаимодействиях тел космических размеров; они определяют также структуру и эволюцию Вселенной. Теория тяготения Эйнштейна привела к новым представлениям об эволюции Вселенной. В середине 20-х гг. А. А. Фридман
нашёл нестационарное решение уравнений гравитационного поля, соответствующее расширяющейся Вселенной. Этот вывод был подтвержден наблюдениями Э. Хаббла
,
открывшего закон красного смещения
для галактик (означающий, что расстояния между любыми галактиками увеличиваются с течением времени). Др. пример предсказания теории – возможность неограниченного сжатия звёзд достаточно большой массы (больше 2–3 солнечных масс) с образованием т. н. «чёрных дыр»
.
Имеются определённые указания (наблюдения за двойными звёздами – дискретными источниками рентгеновских лучей) на существование подобных объектов. Общая теория относительности, как н квантовая механика, – великие теории 20 в. Все предшествующие теории, включая специальную теорию относительности, обычно относят к классической Ф. (иногда классической Ф. называют всю неквантовую Ф.).
Квантовая механика.
Состояние микрообъекта в квантовой механике характеризуется волновой функцией
y. Волновая функция имеет статистический смысл (Борн, 1926): она представляет собой амплитуду вероятности, т. е. квадрат её модуля, ^ey^e2
, есть плотность вероятности нахождения частицы в данном состоянии. В координатном представлении y = y(х, у, z, t
) и величина ^ey^e2
Dx
Dy
Dz
определяет вероятность того, что координаты частицы в момент времени t
лежат внутри малого объёма Dx
Dy
Dz
около точки с координатами х, у, z.
Эволюция состояния квантовой системы однозначно определяется с помощью Шрёдингера уравнения
. Волновая функция даёт полную характеристику состояния. Зная y, можно вычислить вероятность определённого значения любой относящейся к частице (или системе частиц) физические величины и средние значения всех этих физических величин. Статистические распределения по координатам и импульсам не являются независимыми, из чего следует, что координата и импульс частицы не могут иметь одновременно точных значений (принцип неопределённости Гейзенберга); их разбросы связаны неопределённостей соотношением
.
Соотношение неопределённостей имеет место также для энергии и времени.