В общем виде фотохромный процесс заключается в следующем. В исходном состоянии А
вещество, поглощая оптическое излучение определенного спектрального состава, переходит в т. н. фотоиндуцированное состояние В,
для которого характерны иной спектр поглощения света и некоторое (определённое для данного состояния) время жизни. Обратный переход В
(А
совершается самопроизвольно за счёт тепловой энергии и может чрезвычайно сильно ускоряться при нагревании вещества или под действием света, поглощаемого в состоянии В.
Ф. присущ очень большому числу веществ органического или неорганического происхождения. В основе Ф. органических веществ лежит ряд фотофизических процессов и многочисленные фотохимические реакции (см. Фотохимия
;
там же о таких типичных фотофизических процессах, приводящих к Ф., как поглощение света молекулами в триплетном состоянии, в которое они перешли из синглетного, в свою очередь, под действием излучения). Если основой Ф. служат фотохимические реакции, то они сопровождаются либо перестройкой валентных связей (например, при диссоциации
,
димеризации, перегруппировке атомов в молекуле, окислительно-восстановительных реакциях, а также при таутомерных превращениях, см. Таутомерия
),
либо изменением конфигурации атомов в молекулах (т. н. цис-транс-изомерия, см. Изомерия
).
Ф. неорганических веществ обусловлен обратимыми процессами фотопереноса электронов, приводящим к возникновению центров окраски
различного типа, изменению валентности
ионов металлов, а также обратимыми реакциями фотодиссоциации соединений и др. На основе органических и неорганических фотохромных веществ разработаны фотохромные материалы
.
Применение этих материалов в науке и технике основано на их светочувствительности, обратимости происходящих в них фотофизических и фотохимических процессов, на появлении или изменении окраски (спектров поглощения) непосредственно под действием света, на различии термических, химических и физических свойств исходного и фотоиндуцированного состояний фотохромных веществ.
Лит.:
Теренин А. Н., Фотоника молекул красителей и родственных органических соединений, Л., 1967; Барачевский В. А., Фотохромизм, «Журнал Всесоюзного Химического общества им. Д. И. Менделеева», 1974, т. 19, № 4, с. 423–33: Барачевский В. А., Дашков Г. И., Цехомский В. А., Фотохромизм и его применение, М., 1977; Photochromism, N. Y., [1971]. В. А. Барачевский.
Фотохромное стекло
Фотохро'мное стекло',
неорганическое стекло
,
способное обратимо изменять светопропускание в видимой области спектра при воздействии ультрафиолетового или коротковолнового видимого излучения. Светочувствительность Ф. с. обусловлена фотохимическими процессами, которые могут быть связаны как с переходом электронов между элементами переменной валентности (например, EuII
и CeIII
) Так и с фотолизом галогенидов тяжёлых металлов (галогениды равномерно распределены в объёме стекла в виде микрокристаллических образований). Благодаря высоким фотохромным характеристикам (оптическая плотность, достигаемая при затемнении, скорости потемнения и релаксации) и технологическим свойствам наиболее распространены стекла с галогенидами серебра. Известны также Ф. с. с галогенидами меди и хлоридом таллия. Составы стекол разнообразны (силикатные, боратные, боросиликатные, германатные и фосфатные системы). Технологические режимы синтеза Ф. с. те же, что и при получении технических стекол. Возможные области применения Ф. с.: в приборостроении (в качестве светофильтров с переменным пропусканием), строительстве (для регулирования освещённости и нагрева в зданиях), голографии (в качестве регистрирующей среды для записи информации), медицине (специальные очки), самолёто- и ракетостроении (остекление кабин) и т.д. Лит.:
Бережной А. И., Ситаллы и фотоситаллы, М., 1966; Цехомский В. А., Фотохромные стекла, «Оптико-механическая промышленность», 1967, № 7. М. В. Артамонова.
Фотохромные материалы
Фотохро'мные материа'лы
в фотографии, материалы, в которых используется явление фотохромизма
органических и неорганических веществ: один из новых (получивших распространение с 60-х гг. 20 в.) типов светочувствительных материалов для регистрации изображений, записи и обработки оптических сигналов. В зависимости от области применения Ф. м. изготовляют в виде: жидких растворов; полимерных плёнок; тонких аморфных и поликристаллических слоев на гибкой и жёсткой подложке; силикатных и полимерных стекол; монокристаллов.