Читаем Большая Советская Энциклопедия (ФО) полностью

  Лит.: Любименко В. Н,, Фотосинтез и хемосинтез в растительном мире, М. – Л., 1935; Тимирязев К. А., Солнце, жизнь и хлорофилл, М., 1937 (Соч., т. 1–2); Годнев Т. Н., Строение хлорофилла и возможные пути его образования в растении, М. – Л., 1947 (Тимирязевское чтение. 7); Теренин А. Н., Фотохимия хлорофилла и фотосинтез, М., 1951 (Баховское чтение. 6); Рабинович Е., Фотосинтез, пер. с англ., т. 1–3, М., 1951–59; Ничипорович А. А., Фотосинтез и теория получения высоких урожаев, М., 1956 (Тимирязевское чтение, 15); Воскресенская Н. П., Фотосинтез и спектральный состав света, М., 1965; Андреева Т. Ф., Фотосинтез и азотный обмен листьев, М., 1969; Теоретические основы фотосинтетической продуктивности, Сб. докл. на Междунар. симпозиуме, М., 1972; Современные проблемы фотосинтеза. К 200-летию открытия фотосинтеза, М., 1973; Красновский А. А., Преобразование энергии света при фотосинтезе. Молекулярные механизмы, М., 1974 (Баховское чтение. 29); Фотохимические системы хлоропластов, К., 1975; Bioenergetics of photosynthesis, N. Y. – L. – Los Ang., 1975.

  А. А. Ничипорович.

Рис. 1. Схема фотохимических систем (ФС I и ФС II) фотосинтеза.  — окислительно-восстановительный потенциал при pH 7 (в вольтах), Z — донор электронов для ФС II, P680 — энергетическая ловушка и реакционный центр ФС II (светособирающая антенна этого центра включает молекулу хлорофилла а, хлорофилла b, ксантофиллы), Q — первичный акцептор электронов в ФС II, АДФ — аденозиндифосфат, Pнеорг. — неорганический фосфат, АТФ — аденозинтрифосфат, Р700 — энергетическая ловушка и реакционный центр ФС I (светособирающая антенна этого центра включает молекулу хлорофила а, хлорофилла b, каротин), ВВФ — вещество, восстанавливающее ферредоксин.

Рис. 2. Упрощённая схема цикла Калвина — пути фиксации углерода при фотосинтезе.

Фотосинтеза институт АН СССР

Фотоси'нтеза институ'т АН СССР (ИФС), научно-исследовательское учреждение, осуществляющее комплексное изучение механизма процесса фотосинтеза в растениях и микроорганизмах. Организован в 1966 в Научном центре биологических исследований АН СССР в г. Пущино (Серпуховской район Московской области). Имеет (1976): лаборатории – фотохимии, биохимии, фотофосфорилирования, фоторазложения воды, фотосинтеза микроорганизмов, структуры фотосинтетического аппарата, углеродного метаболизма; отдел фитотроники, научная группы энергетики, фоторегуляции фотосинтеза и др., специализированные кабинеты. Проводит исследования первичных фотосинтетических процессов поглощения и преобразования световой энергии в химическую, процессов фоторазложения воды и выделения кислорода, биохимических реакций, происходящих в хлоропластах и приводящих к образованию фотосинтетического восстановителя и богатых энергией фосфорных соединений, цикла усвоения и восстановления углекислоты, молекулярной и структурной организации фотосинтетического аппарата. Осуществляет физиологические исследования, связанные с с.-х. производством в закрытом грунте. Имеет очную и заочную аспирантуру.

  В. Б. Евстигнеев.

Фотосинтезирующие бактерии

Фотосинтези'рующие бакте'рии, фототрофные бактерии, микроорганизмы, использующие в качестве энергии для жизнедеятельности свет (лучистую энергию); в процессе фотосинтеза ассимилируют углекислоту и др. неорганические, а также органические соединения. К Ф. б. относятся пурпурные и зелёные бактерии и близкие к ним по типу строения клеток цианобактерии (называющиеся также синезелёными водорослями ).

  Пурпурные и зелёные бактерии (см. Серобактерии ) содержат различные по составу хлорофиллы (т. н. бактериохлорофиллы а, b, с, d, е ) и каротиноиды . Строгие или факультативные анаэробы. В отличие от высших растений, водорослей и цианобактерий, при фотосинтезе не выделяют кислород, т.к. для фотовосстановления CO2 используют в качестве донора водорода (электронов) не воду, а сероводород, тиосульфат, серу, молекулярный водород или органические соединения. Некоторые пурпурные бактерии, окисляя сероводород и тиосульфат, накапливают в клетках серу, которую далее могут окислять до сульфатов. Кроме CO2 эти микроорганизмы способны фотоассимилировать органические соединения – уксусную кислоту (ацетат), пировиноградную кислоту (пируват) и др. Одни виды растут в основом за счёт фотоассимиляции углекислоты, т. е. являются фотоавтотрофами, другие нуждаются в обязательном наличии органических веществ (фотогетеротрофы). Некоторые виды кроме лучистой энергии могут использовать энергию, образующуюся при дыхании или брожении, и растут в темноте. Многие виды фиксируют молекулярный азот.

Перейти на страницу:

Похожие книги