Читаем Большая Советская энциклопедия (ГЕ) полностью

  4) Г. оказывает влияние на алгебру и даже на арифметику — теорию чисел. В алгебре используют, например, понятие векторного пространства. В теории чисел создано геометрическое направление, позволяющее решать многие задачи, едва поддающиеся вычислительному методу. В свою очередь нужно отметить также графические методы расчётов (см. Номография) и геометрические методы современной теории вычислений и вычислительных машин.

  5) Логическое усовершенствование и анализ аксиоматики Г. играли определяющую роль в выработке абстрактной формы аксиоматического метода с его полным отвлечением от природы объектов и отношений, фигурирующих в аксиоматизируемой теории. На том же материале вырабатывались понятия непротиворечивости, полноты и независимости аксиом.

  В целом взаимопроникновение Г. и др. областей математики столь тесно, что часто границы оказываются условными и связанными лишь с традицией. Почти или вовсе не связанными с Г. остаются лишь такие разделы, как абстрактная алгебра, математическая логика и некоторые др.

  Лит.: Основные классические работы. Евклид, Начала, пер. с греч., кн. 1—15, М. — Л.,1948—50; Декарт Р., Геометрия, пер. с латин., М. — Л., 1938; Монж Г., Приложения анализа к геометрии, пер. с франц., М. — Л., 1936; Ponselet J. V., Traite des proprietes projectives des figures, Metz — Р., 1822; Гаусс К. Ф., Общие исследования о кривых поверхностях, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Лобачевский Н. И., Полн. собр. соч., т. 1—3, М. — Л., 1946—51; Больаи Я., Appendix. Приложение,..., пер. с латин., М. — Л., 1950; Риман Б., О гипотезах, лежащих в основаниях геометрии, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Клейн Ф., Сравнительное обозрение новейших геометрических исследований («Эрлангенская программа»), там же; Картан Э., Группы голономии обобщенных пространств, пер. с франц., в кн.: VIII-й Международный конкурс на соискание премии имени Николая Ивановича Лобачевского (1937 год), Казань, 1940; Гильберт Д., Основания геометрии, пер. с нем., М. — Л., 1948.

  История. Кольман Э., История математики в древности, М., 1961; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Cantor М., Vorlesungen über die Geschichte der Mathematik, Bd 1—4, Lpz., 1907—08.

  Курсы. а) Основания геометрии. Каган В. Ф., Основания геометрии, ч. 1, М. — Л., 1949; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961; Погорелов А. В., Основания геометрии, 3 изд., М., 1968.

  б) Элементарная геометрия. Адамар Ж., Элементарная геометрия, пер. с франц., ч. 1, 3 изд., М., 1948, ч. 2, М., 1938; Погорелов А. В., Элементарная геометрия, М., 1969.

  в) Аналитическая геометрия. Александров П. С., Лекции по аналитической геометрии..., М., 1968; Погорелов А. В., Аналитическая геометрия, 3 изд., М., 1968.

  г) Дифференциальная геометрия. Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М. — Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1—2, М. — Л., 1947—48; Погорелов А. В., Дифференциальная геометрия, М., 1969.

  д) Начертательная и проективная геометрия. Глаголев Н. А., Начертательная геометрия, 3 изд., М. — Л., 1953; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961.

  е) Риманова геометрия и её обобщения. Рашевский П. К., Риманова геометрия и тензорный анализ, 2 изд., М. — Л., 1964; Норден А. П., Пространства аффинной связности, М. — Л., 1950; Картан Э., Геометрия римановых пространств, пер. с франц., М. — Л., 1936; Эйзенхарт Л. П., Риманова геометрия, пер. с англ., М., 1948.

  Некоторые монографии по геометрии. Федоров Е. С., Симметрия и структура кристаллов. Основные работы, М., 1949; Александров А. Д., Выпуклые многогранники, М. — Л., 1950; его же, Внутренняя геометрия выпуклых поверхностей, М. — Л., 1948; Погорелов А. В., Внешняя геометрия выпуклых поверхностей, М., 1969; Буземан Г., Геометрия геодезических, пер. с англ., М., 1962; его же, Выпуклые поверхности, пер. с англ., М., 1964; Картан Э., Метод подвижного репера, теория непрерывных групп и обобщенные пространства, пер. с франц., М. — Л., 1936; Фиников С. П., Метод внешних форм Картана в дифференциальной геометрии, М. — Л., 1948; его же, Проективно-дифференциальная геометрия, М. — Л., 1937; его же, Теория конгруенций, М. — Л., 1950; Схоутен И. А., Стройк Д. Дж., Введение в новые методы дифференциальной геометрии, пер. с англ., т. 1—2, М. — Л., 1939—48; Номидзу К., Группы Ли и дифференциальная геометрия, пер. с англ., М., 1960; Милнор Дж., Теория Морса, пер. с англ., М., 1965.

  А. Д. Александров.

Геометрия резца

Перейти на страницу:

Все книги серии Большая Советская энциклопедия

Нет соединения с сервером, попробуйте зайти чуть позже