Создание эффективных гибридных комплексов требует в первую очередь уточнения основных областей их применения и детального анализа типичных задач из этих областей. В результате этого устанавливают рациональную структуру гибридного комплекса и формируют требования к его отдельным частям.
Задачи, которые эффективно решаются на Г. в. с., можно разбить на следующие основные группы: моделирование в реальном масштабе времени автоматических систем управления, содержащих как аналоговые, так и цифровые устройства; воспроизведение в реальном масштабе времени процессов, содержащих высокочастотные составляющие и переменные, изменяющиеся в широком диапазоне; статистическое моделирование; моделирование биологических систем; решение уравнений в частных производных; оптимизация систем управления.
Примером задачи первой группы может служить моделирование системы управления прокатного стана. Динамика процессов в нём воспроизводится на аналоговой машине, а специализированная управляющая станом машина моделируется на универсальной ЦВМ среднего класса. Вследствие кратковременности переходных процессов в приводах прокатных станов, полное моделирование таких процессов в реальном масштабе времени потребовало бы применения сверхбыстродействующих ЦВМ. Аналогичные задачи часто встречаются в системах управления военными объектами.
Типичными для второй группы являются задачи управления движущимися объектами, в т. ч. и задачи самонаведения, а также задачи, возникающие при создании вычислительной части комплексных тренажеров. Для задач самонаведения характерно формирование траектории движения в процессе самого движения. Большая скорость изменения некоторых параметров при приближении объекта к цели требует высокого быстродействия управляющей системы, превышающего возможности современных ЦВМ, а большой динамический диапазон — высокой точности, трудно достижимой на АВМ. При решении этой задачи на Г. в. с. целесообразно возложить воспроизводство уравнений движения вокруг центра тяжести на аналоговую часть, а движение центра тяжести и кинематические соотношения — на цифровую часть вычислительной системы.
К третьей группе относятся задачи, решение которых получается в результате обработки многих реализаций случайного процесса, например решение многомерных уравнений в частных производных методом Монте-Карло, решение задач стохастичемкого программирования, нахождение экстремума функций многих переменных. Многократная реализация случайного процесса возлагается на быстродействующую АВМ, работающую в режиме многократного повторения решения, а обработка результатов, воспроизводство функций на границах области, вычисление функционалов — на ЦВМ. Кроме того, ЦВМ определяет момент окончания счёта. Применение Г. в. с. сокращает время решения задач этого вида на несколько порядков по сравнению с применением только цифровой машины.
Аналогичный эффект достигается при использовании Г. в. с. для моделирования процессов распространения возбуждения в биологических системах. Специфика этого процесса заключается в том, что даже в простейших случаях требуется воспроизводить сложную нелинейную систему уравнений в частных производных.
Поиск решения задачи оптимального управления для объектов выше третьего порядка обычно связан с большими, часто непреодолимыми, трудностями. Ещё больше они возрастают, если необходимо отыскать оптимальное управление в процессе работы системы. Г. в. с. в значительной степени помогают устранить эти трудности и использовать такие сложные в вычислительном отношении методы, как принцип максимума Понтрягина.
Применение Г. в. с. эффективно также при решении нелинейных уравнений в частных производных. При этом могут решаться как задачи анализа, так и задачи идентификации и оптимизации объектов. Примером задачи оптимизации может служить подбор нелинейности теплопроводного материала для заданного распределения температур; определение геометрии летательных аппаратов для получения требуемых аэродинамических характеристик; распределение толщины испаряющегося слоя, предохраняющего космические корабли от перегрева при входе в плотные слои атмосферы; разработка оптимальной системы подогрева летательных аппаратов с целью предохранения их от обледенения при минимальной затрате энергии на подогрев; расчёт сети ирригационных каналов и установление оптимальных расходов в них и т.п. При решении этих задач ЦВМ соединяется с сеточной моделью, многократно используемой в процессе решения.