Все АЭС основаны на ядерных реакторах двух типов: на тепловых и быстрых нейтронах. Реакторы на тепловых нейтронах, как более простые, получили во всём мире, в том числе и в СССР, наибольшее распространение. К моменту создания первой АЭС в СССР уже были разработаны физические основы цепной реакции деления ядер урана в реакторах на тепловых нейтронах; был выбран тип реактора — канальный, гетерогенный, уран-графитовый (теплоноситель
— обычная вода). Такой реактор надёжен в эксплуатации и обеспечивает высокую степень безопасности, в частности за счёт дробления контура циркуляции теплоносителя. Перегрузку топлива можно производить «на ходу», во время работы реактора. Тепловая мощность реактора первой АЭС составила 30 Мвт
, номинальная электрическая мощность АЭС — 5 Мвт
. Пуском Обнинской АЭС была доказана возможность использования нового источника энергии. Опыт, накопленный при сооружении и эксплуатации этой АЭС, использован при строительстве других АЭС в СССР. В 1964 была включена в Свердловскую энергосистему Белоярская атомная электростанция
им. И. В. Курчатова с реактором на тепловых нейтронах электрической мощностью 100 Мвт
, реактор которой существенно отличался от своего предшественника более высокими тепловыми характеристиками за счёт перегрева пара, осуществляемого в активной зоне
реактора (т. н. ядерный перегрев). Второй блок Белоярской АЭС усовершенствованной конструкции и более мощный (200 Мвт
) был введён в эксплуатацию в 1967. Реактор имеет одноконтурную систему охлаждения. Основной недостаток ядерного перегрева — повышение температуры в активной зоне реактора, что приводит к необходимости применять температуростойкие материалы (например, нержавеющую сталь) для оболочек тепловыделяющих элементов
(ТВЭЛ), а это в большинстве случаев ведёт к снижению общей эффективности использования ядерного топлива. Установленные на первых АЭС уран-графитовые реакторы канального типа не имеют тяжёлого, громоздкого стального корпуса. строительство АЭС с такими реакторами представляется весьма заманчивым, поскольку оно освобождает заводы тяжёлого машиностроения от изготовления стальных изделий больших габаритов (корпус водо-водяного реактора имеет форму цилиндра диаметром 3—5 м
, высотой 11—13 м
при толщине стенок 100—250 мм
) с массой 200—500 т
. Опыт эксплуатации первых уран-графитовых реакторов, работавших по одноконтурной схеме с кипящей водой в качестве теплоносителя, способствовал созданию одноконтурного уран-графитового кипящего реактора
большой мощности — РБМК. Первый такой реактор электрической мощностью 1000 Мвт
(РБМК-1000) был установлен в сентябре 1973 на Ленинградской АЭС им. В. И. Ленина (ЛАЭС), а в декабре 1973 первый блок ЛАЭС дал промышленный ток в электрическую сеть Ленэнерго. Второй блок также мощностью 1000 Мвт
сдан в эксплуатацию в конце 1975. За 1977 ЛАЭС выработала 12,5 млрд. квт
×ч
электроэнергии. Строительство ЛАЭС продолжается, она будет состоять из 4 блоков общей мощностью 4000 Мвт
. Тепловая мощность каждого из 4 блоков ЛАЭС 3200 Мвт
, 70 Гкал/ч
(335 Гдж/ч
) тепла будет отбираться для нужд теплофикации. ЛАЭС является головной из строящихся АЭС в Европейской части СССР. В 1976 вступил в строй первый блок Курской АЭС с реактором РБМК электрической мощностью 1000 Мвт
. В 1977 вошла в строй Чернобыльская АЭС; заканчивается сооружение Смоленской АЭС и других также с несколькими реакторами РБМК-1000. В 1975 в Литовской ССР развернулось строительство Игналинской АЭС с 4 уран-графитовыми реакторами канального типа электрической мощностью 1500 Мвт
каждый. Увеличение единичной мощности реактора РБМК на Игналинской АЭС до 1500 Мвт
достигнуто фактически в габаритах реактора РБМК-1000 за счёт усовершенствования, главным образом конструкции ТВЭЛов. Форсирование мощности РБМК-1000 уменьшает удельные капиталовложения на сооружение АЭС, повышает её среднюю удельную мощность. Ведутся (1978) проработки и эксперименты по созданию реакторов типа РБМК электрической мощностью 2000 и 2400 Мвт
.
В СССР с 1974 успешно эксплуатируется АТЭЦ — атомная теплоэлектроцентраль, построенная в районе г. Билибино (Магаданская область). Электрическая мощность Билибинской АТЭЦ 48 Мвт
, выработка тепла для отопления и централизованного горячего водоснабжения достигает 100 Гкал/ч
.