Читаем Большая Советская Энциклопедия (ИД) полностью

  Известно, что всякое целое (рациональное) число можно разложить в произведение простых множителей; например, 60 = 2 · 2 · 3 · 5, причём разложение единственно с точностью до порядка и знака множителей:

  В 19 в. математики столкнулись с необходимостью разлагать на множители числа более общей природы. Если, например, рассматривать числа вида

где m и n — любые целые (рациональные) числа, то так же, как и для обычных целых чисел, здесь каждое число всегда можно разложить в произведение далее неразложимых множителей. Однако в этом случае нарушается единственность разложения. Так, число 9 (которое получается, если считать m = 9, n = 0) допускает здесь два различных разложения:

причем ни один из множителей

дальше разложить в произведение чисел вида

нельзя. Нарушения привычных законов единственности разложения не будет, если свойство делимости связывать не с числами, а с И. В современной алгебре И. вводятся в произвольных кольцах. В случае числовых колец (таковым является, например, рассмотренная выше совокупность чисел вида

  И. называются также идеальными числами. И. — это совокупность чисел, принадлежащих данному числовому кольцу (а в случае произвольного кольца — совокупность его элементов), обладающая следующими свойствами: 1) сумма и разность двух чисел (элементов) совокупности принадлежит этой совокупности; 2) произведение числа (элемента) из этой совокупности на любое другое число (на любой другой элемент) кольца также принадлежит этой совокупности. Затем рассматривают вместо чисел соответствующие им И.; так, например, числу 9 соответствует И. p = (9), состоящий из всех чисел, делящихся на 9.

  Числовые понятия, связанные с делимостью чисел, переносятся на И.: один И. делится на другой, если любой элемент первого лежит также и во втором (для чисел это эквивалентно тому, что любое число первого И. делится хотя бы на одно число второго); произведение И. определяется как наименьший И., содержащий всевозможные попарные произведения элементов из обоих идеалов-множителей; наибольший общий делитель двух И. — наименьший И., содержащий элементы как первого, так и второго И., и др. В совокупности целых чисел любой И. состоит из кратных какого-либо фиксированного числа: любой И. является главным. В общем случае, уже для алгебраических иррациональных чисел, не всякий И. является главным. Делимость на главный И. эквивалентна делимости на соответствующее этому И. число. Благодаря наличию не главных И. для целых алгебраических чисел остаётся справедливой теорема о том, что любой И. единственным образом разлагается в произведение неразложимых далее И. Эти неразложимые И., называются также простыми И., выполняют роль простых чисел и характеризуются тем, что обязательно содержат хотя бы один из множителей, если они содержат их произведение. Так, в рассмотренном выше примере

(3) = p1 p2,

где

и

— новые И., например И. p1, являющийся наибольшим общим делителем И.

состоит из всех чисел вида

где k и l — любые целые рациональные числа.

  Понятие «И.» (или в первоначальной терминологии «идеального числа») было введено в 1847 для одного частного случая числовых полей немецким математиком Э. Куммером. Строгое и полное обоснование теории И. для любых числовых полей дали независимо друг от друга немецкий математик Р. Дедекинд в 1871 и русский математик Е. И. Золотарев в 1877. Новое содержание теория И. получила в середине 20 в. в связи с развитием общей теории колец.

  Лит.: Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., 2 изд., ч. 1—2, М.—Л., 1947.

Идеал (филос.)

Идеа'л (франц. idéal, от греч. idéa — идея, первообраз), идеальный образ, определяющий способ мышления и деятельности человека или общественного класса. Формирование природы сообразно И. представляет собой специфически-человеческую форму жизнедеятельности, ибо предполагает специальное создание образа цели деятельности до её фактического осуществления.

Перейти на страницу:

Похожие книги

100 великих кумиров XX века
100 великих кумиров XX века

Во все времена и у всех народов были свои кумиры, которых обожали тысячи, а порой и миллионы людей. Перед ними преклонялись, стремились быть похожими на них, изучали биографии и жадно ловили все слухи и известия о знаменитостях.Научно-техническая революция XX века серьёзно повлияла на формирование вкусов и предпочтений широкой публики. С увеличением тиражей газет и журналов, появлением кино, радио, телевидения, Интернета любая информация стала доходить до людей гораздо быстрее и в большем объёме; выросли и возможности манипулирования общественным сознанием.Книга о ста великих кумирах XX века — это не только и не столько сборник занимательных биографических новелл. Это прежде всего рассказы о том, как были «сотворены» кумиры новейшего времени, почему их жизнь привлекала пристальное внимание современников. Подбор персоналий для данной книги отражает любопытную тенденцию: кумирами народов всё чаще становятся не монархи, политики и полководцы, а спортсмены, путешественники, люди искусства и шоу-бизнеса, известные модельеры, иногда писатели и учёные.

Игорь Анатольевич Мусский

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии
Психология любви и секса
Психология любви и секса

Любовь и секс занимают очень заметное место в жизни человечества. Из-за любви люди лишают себя жизни, пишут стихи, возводят дворцы и начинают воины. Из-за секса идут в тюрьмы и ломают себе жизнь.Ученые установили, что наша жизнь управляется четырьмя основными потребностями: самосохранения, размножения, общения и потребностью в информации. Однако сексуальную потребность все-таки называют «основным инстинктом».Сложность изучения любви заключается в том, что это явление представляет собой неделимый сплав биологии, психологии и культуры, и представители каждой из этих наук могут досконально разобраться только в одной стороне этого феномена, а в результате любовь все равно остается загадочной и непознанной. Книга, которую вы держите в руках, представляет собой еще одну попытку понять это чудо. Эту чуму, которую Бог наслал на людей за их грехопадение, а может быть в награду за их стремление к совершенству.

Юрий Викторович Щербатых

Энциклопедии