Частицы классического И. г. движутся независимо друг от друга, так что давление И. г. на стенку равно сумме импульсов, переданных за единицу времени отдельными частицами при столкновениях со стенкой, а энергия — сумме энергий отдельных частиц. Классический И. г. подчиняется уравнению состояния Клапейрона p
= nkT, где р — давление, n — число частиц в единице объёма, k — Больцмана постоянная, Т — абсолютная температура. Частными случаями этого уравнения являются законы Бойля-Мариотта, Гей-Люссака и Шарля (см. Газы). Частицы классического И.г. распределены по энергиям согласно распределению Больцмана (см. Больцмана статистика). Реальные газы хорошо описываются моделью классического И. г., если они достаточно разрежены. При понижении температуры Т
газа или увеличении его плотности n до определённого значения становятся существенными волновые (квантовые) свойства частиц И. г. Переход от классического И. г. к квантовому происходит при тех значениях Т и n, при которых длины волн де Бройлячастиц, движущихся со скоростями порядка тепловых, сравнимы с расстоянием между частицами. В квантовом случае различают два вида И. г.; частицы газа одного вида имеют целочисленный спин
, к ним применима статистика Бозе — Эйнштейна, к частицам другого вида (с полуцелым спином) — статистика Ферми — Дирака (см. Статистическая физика). И. г. Ферми — Дирака отличается от классического тем, что даже при абсолютном нуле температуры его давление и плотность энергии отличны от нуля и тем больше, чем выше плотность газа. При абсолютном нуле температуры существует максимальная (граничная) энергия, которую могут иметь частицы И. г. Ферми — Дирака (так называемая Ферми энергия
). Если энергия теплового движения частиц И. г. Ферми — Дирака много меньше энергии Ферми, то его называют вырожденным газом. Согласно теории строения звезд, в звездах, плотность которых превышает 1—10 кг/см3, существует вырожденный Ферми — Дирака И. г. электронов, а в звёздах с плотностью, превышающей 109 кг/см3, вещество превращается в Ферми — Дирака И. г. нейтронов (см. Нейтронные звёзды). Применение теории И. г. Ферми — Дирака к электронам в металлах
позволяет объяснить многие свойства металлического состояния. Реальный вырожденный Ферми — Дирака И. г. тем ближе к идеальному, чем он плотнее. Частицы И. г. Бозе — Эйнштейна при абсолютном нуле температуры занимают наинизший уровень энергии и обладают равным нулю импульсом (И. г. в состоянии конденсата). С повышением Т
число частиц в конденсате постепенно уменьшается и при некоторой температуре Т0 (температуре фазового перехода) конденсат исчезает (все частицы конденсата приобретают импульс). При Т < Т0 давление И. г. Бозе — Эйнштейна зависит только от температуры. Свойствами такого И. г. обладает при температурах, близких к абсолютному нулю, гелий. Другим примером И. г. Бозе — Эйнштейна является электромагнитное излучение (И. г. фотонов), находящееся в тепловом равновесии с излучающим телом. И. г. фотонов является также примером ультрарелятивистского И. г., то есть совокупности частиц, движущихся со скоростями, равными или близкими скорости света. Уравнение состояния такого газа: р = e/3, где e — плотность энергии газа. При достаточно низких температурах различного рода коллективные движения в жидкостях и твёрдых телах (например, колебания атомов кристаллической решётки) можно представить как И. г. слабых возбуждений (квазичастиц), энергия которых вносит свой вклад в энергию тела (см. Твёрдое тело, Квантовая жидкость). В. Л. Покровский.
Идеальный кристалл
Идеа'льный криста'лл,
1) кристалл совершенной структуры, лишенный всех дефектов строения (см. Дефекты в кристаллах), которые неизбежны в реально существующих кристаллах. И. к. является теоретической моделью, широко используемой в теории твёрдого тела. 2) Кристалл совершенной формы, в которой физически равноценные грани одинаково развиты. Кристаллы, близкие к И. к., вырастают в подвешенном состоянии в хорошо перемешиваемом переохлажденном растворе (см. Монокристаллы). Идейность