Иго'льный мы'с, Агульяш (Agulhas), самый южный мыс Африки (34°52c южной широты и 19°59c восточной долготы). Находится на территории Южно-Африканской Республики, в 155
Игольчатая лента
Иго'льчатая ле'нта, то же, что
Игольчатое
Иго'льчатое ружьё, нарезное ружье, заряжавшееся с казённой части, в котором при выстреле игла прокалывала дно бумажного патрона и воспламеняла ударный состав капсюля. Первым нарезным И. р. было прусское ружье, созданное И. Н. Дрейзе (1840), которое позволило увеличить скорость стрельбы в 5 раз, а возможность заряжания ружья лежащим стрелком давала тактические преимущества. После австро-прусской войны 1866, в которой И. р. оправдало себя, во Франции А. А. Шаспо разработал (1866) новое И. р., превосходившее по конструкции и меткости ружье Дрейзе. В России появились ружья Карле, по системе очень сходные с ружьем Шаспо. К концу 19 в. И. р. всюду были заменены более совершенным оружием с пружинным ударником, помещенным в затворе (см.
Игольчатый подшипник
Иго'льчатый подши'пник, см.
Игорь (великий князь киевский)
И'горь (год рождения неизвестен — ум. 945), великий князь киевский с 912 (летописец приписывает И. происхождение от полулегендарного Рюрика). И. продолжал деятельность своего предшественника
Игорь Святославич
И'горь Святосла'вич (1150 — 1202), новгород-северский князь с 1178, черниговский с 1199, сын Святослава Ольговича, князя черниговского. Участник феодальной войн 2-й половины 12 в. за киевский стол. В 1170-х гг. одержал ряд побед над половцами. И. С. в союзе с другими князьями вступил в борьбу с половцами, в 1185 организовал поход против них, оказавшийся неудачным, и попал в плен. Поход послужил сюжетной основой для «Слова о полку Игореве».
Игр теория
Игр тео'рия, раздел математики, изучающий формальные модели принятия оптимальных решений в условиях конфликта. При этом под конфликтом понимается явление, в котором участвуют различные стороны, наделённые различными интересами и возможностями выбирать доступные для них действия в соответствии с этими интересами. Отдельные математические вопросы, касающиеся конфликтов, рассматривались (начиная с 17 в.) многими учёными. Систематическая же математическая теория игр была детально разработана американскими учёными Дж. Нейманом и О. Моргенштерном (1944) как средство математического подхода к явлениям конкурентной экономики. В ходе своего развития И. т. переросла эти рамки и превратилась в общую математическую теорию конфликтов. В рамках И. т. в принципе поддаются математическому описанию военные и правовые конфликты, спортивные состязания, «салонные» игры, а также явления, связанные с биологической борьбой за существование.
В условиях конфликта стремление противника скрыть свои предстоящие действия порождает неопределённость. Наоборот, неопределённость при принятии решений (например, на основе недостаточных данных) можно интерпретировать как конфликт принимающего решения субъекта с природой. Поэтому И. т. рассматривается также как теория принятия оптимальных решений в условиях неопределённости. Она позволяет математизировать некоторые важные аспекты принятия решений в технике, сельском хозяйстве, медицине и социологии. Перспективен подход с позиций И. т. к проблемам управления, планирования и прогнозирования.