Информа'ции нау'чной и техни'ческой институ'т
Всесоюзный (ВИНИТИ), информационный орган и научно-исследовательское учреждение Государственного комитета Совета Министров СССР по науке и технике и АН СССР. Организован АН СССР в 1952 в Москве. В 1952—54 — Институт научной информации, с 1955 — ВИНИТИ. Основные задачи: систематическое и исчерпывающее реферирование всей мировой литературы по естествознанию и технике; подготовка и издание на этой основе реферативного журнала
, обзорной и сигнальной информации
, экспресс-информации
по наиболее актуальным темам; информационное обслуживание, организация, развитие и координация в масштабах страны научных исследований в области информатики, направленных на совершенствование методов и средств, используемых в научно-информационной деятельности. С 1953 институт издаёт «Реферативный журнал» (в 170 выпусках, из которых 38 выходят отдельными выпусками, а 132 в 25 сводных томах), с 1967 — «Сигнальную информацию» (в 55 выпусках), с 1955 — «Экспресс-информацию» (в 78 сериях), с 1957 — «Итоги науки» и «Итоги науки и техники», с 1962 — ежемесячный журнал «Научно-техническая информация» (в 2 сериях). При институте имеются очная и заочная аспирантура, Совет по защите диссертаций, Всесоюзный центр переводов научно-технической литературы и документации. Информации теория
Информа'ции тео'рия,
математическая дисциплина, исследующая процессы хранения, преобразования и передачи информации
. И. т. — существенная часть кибернетики
. В основе И. т. лежит определённый способ измерения количества информации, содержащейся в каких-либо данных («сообщениях»). И. т. исходит из представления о том, что сообщения, предназначенные для сохранения в запоминающем устройстве
или для передачи по каналу связи, не известны заранее с полной определённостью. Заранее известно лишь множество, из которого могут быть выбраны эти сообщения, и в лучшем случае — то, как часто выбирается то или иное из этих сообщений (т. е. вероятность сообщений). В И. т. показывается, что «неопределённость», с которой сталкиваются в подобной обстановке, допускает количественное выражение и что именно это выражение (а не конкретная природа самих сообщений) определяет возможность их хранения и передачи. В качестве такой «меры неопределённости» в И. т. принимается число двоичных знаков, необходимое для фиксирования (записи) произвольного сообщения данного источника. Более точно — рассматриваются все возможные способы обозначения сообщений цепочками символов 0 и 1 (двоичные коды), удовлетворяющие условиям: а) различным сообщениям соответствуют различные цепочки и б) по записи некоторой последовательности сообщений в кодированной форме эта последовательность должна однозначно восстанавливаться. Тогда в качестве меры неопределённости принимают среднее значение длины кодовой цепочки, соответствующее самому экономному способу кодирования
; один двоичный знак служит единицей измерения (см. Двоичные единицы
). Пример. Пусть некоторые сообщения x
1
, x2
, x3
появляются с вероятностями, равными соответственно 1
/2
, 3
/8
, 1
/8
. Какой-либо слишком короткий код, скажемx
1
= 0, x2
= 1, x3
= 01,непригоден, так как нарушается вышеупомянутое условие б). Так, цепочка 01 может означать x
1
, x2
или x3
. Кодx
1
= 0, x2
= 10, x3
= 11,удовлетворяет условиям а) и б). Ему соответствует среднее значение длины кодовой цепочки, равное
Нетрудно понять, что никакой другой код не может дать меньшего значения, т. е. указанный код — самый экономный. В соответствии с выбором меры неопределенности, неопределенность данного источника сообщении следует принять равной 1,5 двоичной единицы.
Здесь уместно подчеркнуть, что термины «сообщение», «канал связи» и т. п. понимают в И. т. очень широко. Так, с точки зрения И. т., источник сообщений описывается перечислением множества x
1
, x2
,... возможных сообщений (которые могут быть словами какого-либо языка, результатами измерений, телевизионными изображениями и т. п.) и соответствующих им вероятностей p1
, p2
,... Нет никакой простой формулы, выражающей точный минимум H’
среднего числа двоичных знаков, необходимого для кодирования сообщении x1
, x2
,..., xn
через вероятности p1
, p2
,..., pn
этих сообщений. Однако указанный минимум не меньше величины
(где log2
a
обозначает логарифм числа a
при основании 2) и может превосходить её не более чем на единицу. Величина Н
(энтропия множества сообщений) обладает простыми формальными свойствами, а для всех выходов И. т., которые носят асимптотический характер, соответствуя случаю H’
® yen, разница между H
и H’
абсолютно несущественна. Поэтому именно энтропия принимается в качестве меры неопределённости сообщений данного источника. В приведённом выше примере энтропия равна