Читаем Большая Советская Энциклопедия (ИН) полностью

  Особенный интерес для теории связи представляет случай, когда в обстановке примеров 4 и 5 случайные величины X и Y заменяются случайными функциями (или, как говорят, случайными процессами) X (t ) и Y (t ), которые описывают изменение некоторой величины на входе и на выходе передающего устройства. Количество И. в Y (t ) относительно X (t ) при заданном уровне помех («шумов», по акустической терминологии) q(t ) может служить критерием качества самого этого устройства (см. Сигнал , Шеннона теорема ).

  В задачах математической статистики также пользуются понятием И. (сравни примеры 3 и 3а). Однако как по своему формальному определению, так и по своему назначению оно отличается от вышеприведённого (из теории И.). Статистика имеет дело с большим числом результатов наблюдений и заменяет обычно их полное перечисление указанием некоторых сводных характеристик. Иногда при такой замене происходит потеря И., но при некоторых условиях сводные характеристики содержат всю И., содержащуюся в полных данных (разъяснение смысла этого высказывания даётся в конце примера 6). Понятие И. в статистике было введено английским статистиком Р. Фишером в 1921.

  Пример 6. Пусть X1 , X2 , ..., Xn , — результаты n независимых наблюдений некоторой величины, распределённые по нормальному закону с плотностью вероятности

где параметры a и s2 (среднее и дисперсия) неизвестны и должны быть оценены по результатам наблюдений. Достаточными статистиками (т. е. функциями от результатов наблюдении, содержащими всю И. о неизвестных параметрах) в этом примере являются среднее арифметическое

и так называемая эмпирическая дисперсия

Если параметр s2 известен, то достаточной статистикой будет только X (сравни пример 3 а выше).

  Смысл выражения «вся И.» может быть пояснён следующим образом. Пусть имеется какая-либо функция неизвестных параметров j = j (a , s2 ) и пусть

j* = j*(X1 , X2 , ..., Xn )

— какая-либо её оценка, лишённая систематической ошибки. Пусть качество оценки (её точность) измеряется (как это обычно делается в задачах математической статистики) дисперсией разности j* — j. Тогда существует другая оценка j**, зависящая не от отдельных величин Xi , а только от сводных характеристик X и s2 , не худшая (в смысле упомянутого критерия), чем j*. Р. Фишером была предложена также мера (среднего) количества И. относительно неизвестного параметра, содержащейся в одном наблюдении. Смысл этого понятия раскрывается в теории статистических оценок.

  Лит.: Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Ван-дер-Варден Б. Л., Математическая статистика, пер. с нем., М., 1960; Кульбак С., Теория информации и статистика, пер. с англ., М., 1967.

  Ю. В. Прохоров.

Информация (изложение)

Информа'ция (от лат. informatio — разъяснение, изложение), первоначально — сведения, передаваемые одними людьми другим людям устным, письменным или каким-либо другим способом (например, с помощью условных сигналов, с использованием технических средств и т. д.), а также сам процесс передачи или получения этих сведений. И. всегда играла в жизни человечества очень важную роль. Однако в середины 20 в. в результате социального прогресса и бурного развития науки и техники роль И. неизмеримо возросла. Кроме того, происходит лавинообразное нарастание массы разнообразной И., получившее название «информационного взрыва». В связи с этим возникла потребность в научном подходе к И., выявлении её наиболее характерных свойств, что привело к двум принципиальным изменениям в трактовке понятия И. Во-первых, оно было расширено и включило обмен сведениями не только между человеком и человеком, но также между человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растительном мире. Передачу признаков от клетки к клетке и от организма к организму также стали рассматривать как передачу И. (см. Генетическая информация , Кибернетика биологическая ). Во-вторых, была предложена количественная мера И. (работы К. Шеннона , А. Н. Колмогорова и др.), что привело к созданию информации теории .

  Более общий, чем прежде, подход к понятию И., а также появление точной количественной меры И. пробудили огромный интерес к изучению И. С начала 1950-х гг. предпринимаются попытки использовать понятие И. (не имеющее пока единого определения) для объяснения и описания самых разнообразных явлений и процессов.

  Исследование проблем, связанных с научным понятием И., идёт в трёх основных направлениях. Первое из них состоит в разработке математического аппарата, отражающего основные свойства И. (см. Информация в кибернетике).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже