Инфракра'сная те'хника,
ИК техника, область прикладной физики и техники, включающая разработку и применение в научных исследованиях, на производстве и в военном деле приборов, действие которых основано на использовании инфракрасного излучения
и его физических свойств. К И. т. относятся: приборы для обнаружения и измерения инфракрасного излучения (см. Приёмники излучения
), приборы для наблюдения (см. Видиконы
, Электроннооптические преобразователи
) и фотографирования в темноте (см. Инфракрасная фотография
), приборы для дистанционного измерения температуры нагретых тел по их тепловому излучению (см. Пирометры
), приборы для скрытой сигнализации, земной и космической связи, инфракрасные прицелы, дальномеры, приборы для обнаружения наземных, морских и воздушных целей по их собственному тепловому инфракрасному излучению (теплопеленгаторы, приборы ночного видения), устройства для самонаведения на цель снарядов и ракет. В более широком понимании к И. т. можно также отнести разработку и создание приёмников и источников инфракрасного излучения (включая создание оптических квантовых генераторов
инфракрасного диапазона), разработку светофильтров для выделения инфракрасного излучения, материалов, прозрачных в инфракрасной области спектра, создание приборов для получения инфракрасных спектров поглощения и испускания (см. Инфракрасная спектроскопия
) и др. Лит.:
Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, М., 1967; Круз П., Макглоулин Л., Макквистан Р., Основы инфракрасной техники, пер. с англ., М., 1964; Марголин И. А., Румянцев Н. М., Основы инфракрасной техники, 2 изд., М., 1957. В. И. Малышев.
Инфракрасная фотография
Инфракра'сная фотогра'фия,
ИК-фотография, получение фотоснимков в инфракрасном излучении
. Фотоснимки в ИК-излучении можно получать различными методами. Наиболее прост метод непосредственного фотографирования на фотопластинки и плёнки, чувствительные к ИК-излучению (инфраплёнки или пластинки). При этом на объектив фотоаппарата устанавливают светофильтр, пропускающий ИК-излучение и непрозрачный для видимого света. Длинноволновая граница чувствительности современных инфрафотоматериалов l = 1,2 мкм
. Чувствительность инфраплёнок и пластинок относительно мала, поэтому для И. ф. в условиях малой освещённости применяют приборы, состоящие из электронно-оптического преобразователя
и обычного фотоаппарата. Электронно-оптический преобразователь, установленный перед объективом фотоаппарата, преобразует невидимое инфракрасное изображение в видимое и одновременно усиливает его яркость. Такие приборы позволяют получать снимки на обычной фотоплёнке в полной темноте при небольшой мощности облучающего источника ИК-излучения. Длинноволновая граница прибора определяется фотокатодом преобразователя и не превышает l = 1,2 мкм
. С помощью специальных приборов можно получать И. ф. в области l > 1,2 мкм
. Один из них — инфракрасный видикон
— представляет собой телевизионную систему, у которой экран передающей трубки изготовлен из фотопроводящих полупроводниковых материалов, изменяющих свою электропроводность под действием ИК-излучения. Получаемое на экране приёмной трубки видимое телевизионное изображение фотографируется обычным фотоаппаратом. Длинноволновая граница видикона зависит от природы материала фотопроводящего экрана и его температуры: при Т
= 79 К (охлаждение жидким азотом) l » 5 мкм
, а при Т
= 21 К (охлаждение жидким водородом) l » 20 мкм.
И. ф. позволяет получать дополнительную (по сравнению с фотографией в видимом свете или при рассматривании объекта глазом) информацию об объекте
(см. рис. 1—9
). Так как ИК-излучение рассеивается при прохождении через дымку и туман меньше, чем видимое излучение, И. ф. позволяет получать чёткие снимки предметов, удалённых на сотни км
(рис. 1
).
Благодаря различию коэффициентов отражения и пропускания в видимом и инфракрасном диапазонах на И. ф. можно увидеть детали, не видимые глазом и на обычной фотографии (рис. 2
, 3
). Эти особенности И. ф. широко используются в ботанике — при изучении болезней растений (рис. 4
), в медицине — при диагностике кожных и сосудистых заболеваний (рис. 5
), в криминалистике — при обнаружении подделок (рис. 6
), в инфракрасной аэросъёмке
(рис. 7
), в астрономии — при фотографировании звёзд и туманностей (рис. 8
). И. ф. можно получать в полной темноте (рис. 9
).