Инва'р
(от лат. invariabilis — неизменный) сплав на основе железа; содержит 36% никеля. Впервые получен во Франции в 1896 Ш. Гильомом. И. имеет малый коэффициент теплового расширения (1,5×10-6
1/°С при температуре от — 80 до 100°C). Малое тепловое расширение И. объясняется тем, что магнитострикционное уменьшение объема при нагреве компенсирует
тепловое расширение (см. Магнитострикция
). И. используется для изготовления геодезических проволок и лент, линеек, деталей измерительных и контрольных приборов и др. Температура плавления И. 1430 °С, предел прочности около 490 Мн/м
2
(49 кгс/мм
2
). Для повышения прочности И. подвергают холодной пластической деформации с последующей низкотемпературной термообработкой. После полировки сплав приобретает стойкость против коррозии в атмосферных условиях; на изделия из сплава, предназначенные для работы в агрессивных средах, наносят защитные покрытия. Разновидностями И. являются сплавы с особо низким коэффициентом теплового расширения (менее 1×10-6
1/°С) — суперинвар, содержащий 64% железа, 32% никеля и 4% кобальта, и нержавеющий И., содержащий 54% кобальта, 37% железа и 9% хрома. Инвариантность (в математике)
Инвариа'нтность,
неизменность, независимость от физических условий. Чаще рассматривается И. в математическом смысле — неизменность какой-либо величины по отношению к некоторым преобразованиям (см. Инварианты
). Например, если рассматривать движение материальной точки в двух системах координат, повёрнутых одна относительно другой на некоторый угол, то проекции скорости движения будут изменяться при переходе от одной системы отсчёта к другой, но квадрат скорости, а следовательно, и кинетическая энергия останутся неизменными, т. е. кинетическая энергия инвариантна относительно пространственных вращений системы отсчёта. Важным случаем преобразований являются преобразования координат и времени при переходе от одной инерциальной системы отсчёта
к другой (Лоренца преобразования
). Величины, не изменяющиеся при таких преобразованиях, называются лоренц-инвариантными. Пример такого инварианта — так называемый четырёхмерный интервал
, квадрат которого равен s2
12
= (x
1
— x
2
)2
+ (y
1
— y
2
)2
+ (z
1
— — z
2
)2
— c
2
(t
1
— t
2
)2
,
где x
1
, y
1
, z
1
и x
2
, y
2
, z
2
—
координаты двух точек пространства, в которых происходят некоторые события, a t
1
и t
2
—
моменты времени, в которые эти события совершаются, с
— скорость света. Другой пример: напряжённости электрического Е
и магнитного Н
полей меняются при преобразованиях Лоренца, но E
2
— H
2
и (EH
) являются лоренц-инвариантными. В общей теории относительности (теории тяготения
) рассматриваются величины, инвариантные относительно преобразований к произвольным криволинейным координатам, и т. д. Важность понятия И. обусловлена тем, что с его помощью можно выделить величины, не зависящие от выбора системы отсчёта, т. е. характеризующие внутренние свойства исследуемого объекта. И. тесно связана с имеющими большое значение сохранения законами
. Равноправие всех точек пространства (однородность пространства), математически выражающееся в виде требования И. некоторой функции, определяющей уравнения движения (так называемая лагранжиана) относительно преобразований переноса начала координат, приводит к закону сохранения импульса; равноправие всех направлений в пространстве (изотропия пространства) — к закону сохранения момента количества движения; равноправие всех моментов времени — к закону сохранения энергии и т. д. (Нётер теорема
).
В. И. Григорьев.
Инвариантность (в системах автоматического регулирования)
Инвариа'нтность,
в системах автоматического регулирования, независимость какой-либо системы от приложенных к ней внешних воздействий. Независимость одной из регулируемый координат системы от всех внешних воздействии или независимость всех координат от одного какого-либо воздействия называется полиинвариантностью. Часто условия И. не могут быть выполнены точно; в этом случае говорят об И. с точностью до некоторой наперёд заданной величины. Для реализуемости условий И. необходимо наличие в системе по меньшей мере двух каналов распространения воздействия между точкой приложения внешнего воздействия и координатой, И. которой должна быть обеспечена (принцип двухканальности Б. Н. Петрова
). Идеи И. применяют в системах автоматического управления летательными аппаратами, судами, для управления химическими процессами при построении следящих систем и особенно комбинированных систем, в которых одновременно используются принципы регулирования по отклонению и по возмущению. Лит.:
Кухтенко А. И., Проблема инвариантности в автоматике, К. ,1963; Петров Б. Н., Рутковский В. Ю., Двухкратная инвариантность систем автоматического управления, «Докл. АН СССР», 1965, т. 161, № 4.