Читаем Большая Советская Энциклопедия (ИО) полностью

  Ионно-ионная (вторичная ионная) эмиссия происходит при облучении поверхности пучком ионов (первичных). При этом наблюдается эмиссия (выбивание) вторичных ионов и нейтральных частиц (см. также Катодное распыление). В пучке вылетающих ионов присутствуют отражённые от поверхности первичные ионы (иногда изменившие знак заряда), ионы материала мишени и примесей. Ионно-ионная эмиссия характеризуется коэффициент эмиссии К, равным отношению потока вторичных ионов nвт данного типа к потоку nп первичных ионов, бомбардирующих поверхность. Обычно К составляет доли % для однозарядных ионов. Величина К зависит от материала мишени, её температуры, типа первичных ионов, их кинетической энергии, угла падения на поверхность, состава и давления газа, окружающего мишень, и др. (рис. 2). Пространственное распределение вторичных ионов определяется энергией и углом падения первичных ионов. Средняя энергия вторичных ионов обычно не превышает 10 эв. Однако при наклонном падении быстрых ионов на мишень она может быть значительно выше. Ионно-ионная эмиссия применяется для изучения адсорбции, катализа, при исследовании свойств поверхности (см. Ионный микроскоп) и др.

  Электронно-ионная эмиссия. Электрон при ударе о поверхность затрачивает часть кинетической энергии на разрыв связи частицы эмиттера с поверхностью. При этом частица может покинуть поверхность в виде иона. Электронно-ионная эмиссия находит применение для изучения состояния адсорбированных частиц.

  Фотодесорбция ионов. Поглощение светового фотона может привести к распаду молекулы мишени на ионы либо к ионизации атома или молекулы. Часть ионов, возникающих при этом, может покинуть поверхность.

  Если эмиттер облучить интенсивным световым потоком (луч лазера мощностью в импульсе ~ 108—109вт/см2), то наблюдается выход ионов вещества мишени с зарядами различной кратности и даже полностью лишённых электронов (например, Co27+). Источником ионов в этом случае является высокоионизованная плазма, образующаяся вблизи эмиттера при испарении вещества.

  Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Фогель Я. М., Вторичная ионная эмиссия, «Успехи физических наук», 1967, т. 91, в. 1, с. 75; Зандберг Э. Я., Ионов Н. И., Поверхностная ионизация, М., 1969; Каминский М., Атомные и ионные столкновения на поверхности металла, пер. с англ., М., 1967.

  Н. И. Ионов, В. Е. Юрасова.

Рис. 2. Зависимость коэффициента К ионно-ионной эмиссии для различных вторичных ионов (H-, H+, O+, Mo+) от скорости v в см/сек первичных ионов [H+(1), Ne+(2), Ar+(3), Kr+(4)] при бомбардировке ими мишени из Mo.

Рис. 1. Зависимость логарифма плотности ионного тока от температуры эмиттера Т при испарении W и Re в виде положительных и отрицательных ионов.

Ионное внедрение

Ио'нное внедре'ние, ионное легирование, введение посторонних атомов внутрь твёрдого тела путём бомбардировки его поверхности ионами. Средняя глубина проникновения ионов в мишень тем больше, чем больше энергия ионов (ионы с энергиями ~ 10—100 кэв проникают на глубину 0,01—1 мкм). При бомбардировке монокристаллов глубина проникновения частиц вдоль определённых кристаллографических направлений резко возрастает (см. Каналирование заряженных частиц).

  При интенсивной бомбардировке на И. в. влияет катодное распыление мишени, а также диффузия внедрённых ионов и их выделение с поверхности. Существует максимально возможная концентрация внедрённых ионов, которая зависит от вида иона и мишени, а также от температуры мишени.

  И. в. наиболее широко используется при введении примесей в полупроводниковые монокристаллы для создания требуемой примесной электропроводности полупроводника. Следующий за этим отжиг проводится для уничтожения образовавшихся дефектов в кристалле, а также для того, чтобы внедрённые ионы заняли определённые места в узлах кристаллической решётки. И. в. позволяет вводить в разные полупроводниковые материалы точно дозированные количества почти любых химических элементов. При этом можно управлять распределением внедрённых ионов по глубине путём изменения энергии ионов, интенсивности и направления ионного пучка относительно кристаллографических осей. И. в. позволяет создать в полупроводниковом кристалле электронно-дырочный переход на малой глубине, что увеличивает, например, предельную частоту транзисторов.

  Лит.: Мейер Дж., Эриксон А., Девис Дж., Ионное легирование полупроводников (кремний, германий), пер. с англ., М., [в печати]; Легирование полупроводников ионным внедрением, пер. с англ., М., 1971.

  Ю. В. Мартыненко.

Ионное произведение воды

Перейти на страницу:

Похожие книги

100 великих кладов
100 великих кладов

С глубокой древности тысячи людей мечтали найти настоящий клад, потрясающий воображение своей ценностью или общественной значимостью. В последние два столетия всё больше кладов попадает в руки профессиональных археологов, но среди нашедших клады есть и авантюристы, и просто случайные люди. Для одних находка крупного клада является выдающимся научным открытием, для других — обретением национальной или религиозной реликвии, а кому-то важна лишь рыночная стоимость обнаруженных сокровищ. Кто знает, сколько ещё нераскрытых загадок хранят недра земли, глубины морей и океанов? В историях о кладах подчас невозможно отличить правду от выдумки, а за отдельными ещё не найденными сокровищами тянется длинный кровавый след…Эта книга рассказывает о ста великих кладах всех времён и народов — реальных, легендарных и фантастических — от сокровищ Ура и Трои, золота скифов и фракийцев до призрачных богатств ордена тамплиеров, пиратов Карибского моря и запорожских казаков.

Андрей Юрьевич Низовский , Николай Николаевич Непомнящий

История / Энциклопедии / Образование и наука / Словари и Энциклопедии