К. опубликовал много книг и статей; его замечательные математические способности проявились не только в астрономических работах, но и при рассмотрении задачи об измерении объёмов («Новая стереометрия винных бочек», 1615), для чего К. предложил способ, содержащий в себе начатки анализа бесконечно малых. Используя идею метода неделимых, известную ему из работ Архимеда, К. оригинальными приемами нашел объемы многих тел вращения. Сразу же после открытия логарифмов К. дал подробную теорию их использования для вычислений (1614) и составил таблицы логарифмов, по структуре похожие на современные (1624).
Мировоззрение К. не было чуждо пифагорейским идеям, даже мистике. Он считался одним из крупнейших астрологов своего времени, хотя занимался астрологией в основном для заработка.
Открытия К. сыграли большую историческую роль, став основой дальнейшего прогресса астрономии.
Соч.: Gesammelte Werke, v. 1—18, M"unch., 1937—69.
И. Кеплер.
Кеплера законы
Ке'плера зако'ны,
три закона движения планет, открытые И.Первый К. з. В невозмущённом движении (т. е. в задаче двух тел) орбита движущейся точки есть кривая второго порядка, в одном из фокусов которой находится центр силы притяжения. Таким образом, орбита материальной точки в невозмущённом движении — это некоторое коническое сечение, то есть окружность, эллипс, парабола или гипербола. Второй К. з. В невозмущенном движении площадь, описываемая радиус-вектором движущейся точки, изменяется пропорционально времени. Первые два К. з. имеют место только для невозмущенного движения, происходящего под действием силы притяжения, обратно пропорциональной квадрату расстояния до центра силы. Третий К. з. В невозмущенном эллиптическом движении двух материальных точек произведение квадратов времен обращения на суммы масс центральной и движущейся точек как кубы больших полуосей их орбит, т. е.
где
Открыв первые два закона, Кеплер составил основанные на них таблицы движения планет, опубликованные в 1627 под названием «Рудольфовых таблиц». Эти таблицы по своей точности далеко превзошли все прежние, ими пользовались в практической астрономии на протяжении 17 и 18 вв. Успех Кеплера в объяснении движения планет обусловлен новым методологическим подходом к решению вопроса: впервые в истории астрономии была сделана попытка определить планетные орбиты непосредственно из наблюдений.
Уже Кеплеру было ясно, что открытые им законы не являются совершенно строгими. Если для планет они выполняются с большой точностью, то для того, чтобы представить движение Луны, оказалось необходимым ввести эллипс с вращающейся линией апсид и добавить неравенства, называемые эвекцией и вариацией. Эти неравенства были открыты эмпирически ещё