Спонтанное излучение одного из возбуждённых атомов активной среды (т. е. атома, находящегося на уровне E
2), прежде чем оно выйдет из объёма V, может вызвать вынужденные переходы др. возбуждённых атомов и вследствие этого усилится (рис. 3). Существенно, что усиление зависит от пути, проходимого волной в среде, т. е. от направления. Если поместить активную среду в простейший оптический резонатор, т. е. между двумя параллельными полупрозрачными зеркалами, находящимися на определённом расстоянии друг от друга, как в интерферометре Фабри — Перо (рис. 4), то в наиболее благоприятные условия попадает волна, распространяющаяся вдоль оси интерферометра. Усиливаясь, она достигнет зеркала, отразится от него и пойдёт в обратном направлении, продолжая усиливаться, затем отразится от второго зеркала и т.д. При каждом «проходе» интенсивность волны увеличивается в ekL раз, где k — коэффициент усиления в см-1, L — длина пути волны в активной среде. Если усиление на длине L больше потерь, испытываемых волной при отражении, то с каждым проходом волна будет усиливаться всё больше и больше, пока плотность энергии r (n) в волне не достигнет некоторого предельного значения. Рост r (n) прекращается, когда выделяемая в результате вынужденных переходов энергия, пропорциональная r (n), не может компенсироваться энергией, затрачиваемой на возбуждение атомов. В результате между зеркалами устанавливается стоячая волна, а сквозь полупрозрачные зеркала выходит наружу поток когерентного излучения. Интерферометр Фабри — Перо, заполненный активной средой с достаточно большим коэффициентом усиления, представляет собой простейший Л. В Л. используются оптические резонаторы и др. типов — с плоскими зеркалами, сферическими, комбинациями плоских и сферических и др. (см. Открытый резонатор
). В оптических резонаторах, обеспечивающих обратную связь в Л., могут возбуждаться только некоторые определённые типы колебаний электромагнитного поля, называются собственными колебаниями или модами резонатора. Моды характеризуются частотой и формой, т. е. пространственным распределением колебаний. В резонаторе с плоскими зеркалами (рис. 4) преимущественно возбуждаются типы колебаний, соответствующие плоским волнам, распространяющимся вдоль оси резонатора. Такой резонатор позволяет получать излучение высокой направленности. Телесный угол DW, в котором сосредоточен поток излучения, может быть сделан , где D — диаметр зеркал. Для l » 1 мкм и D = 1 см величина » 10-8 (для тепловых источников DW ~ 2p). Оптический резонатор накладывает ограничения на спектральный состав излучения. При заданной длине резонатора L в нём возбуждаются волны с частотами , где с
— скорость света, n — целое число. В результате спектр излучения Л., как правило, представляет собой набор узких спектральных линий, интервалы между которыми одинаковы и равны c/2L. Число линий (компонент) при заданной длине L зависит от свойств активной среды, т. е. от спектра спонтанного излучения на используемом квантовом переходе и может достигать нескольких десятков и сотен (рис. 5). При определённых условиях оказывается возможным выделить одну спектральную компоненту, т. е. осуществить одномодовый режим генерации. Спектральная ширина каждой из компонент dnл определяется потерями энергии в резонаторе и, в первую очередь, пропусканием и поглощением света зеркалами. Так как величина dnл может быть сделана во много раз меньше ширины спектральных линий спонтанного излучения атомов, то излучение Л. в одномодовом режиме характеризуется высокой монохроматичностью. Существующие Л. различаются: 1) способом создания в среде инверсии населённостей, или, как говорят, способом накачки (оптическая накачка, возбуждение электронным ударом, химическая накачка и т.п.; см. ниже); 2) рабочей средой (твёрдые диэлектрики, полупроводники, газы, жидкости); 3) конструкцией резонатора; 4) режимом работы (импульсный, непрерывный). Все эти различия определяются потребностями применений, предъявляющих часто совершенно различные требования к характеристикам Л.