По сернокислотному методу также получают сначала раствор сульфата Л., а затем карбонат Л.; сподумен разлагают серной кислотой при 250—300°С (реакция применима только для b-модификации сподумена):
b-Li2
OxAl2O3x4SiO2 + H2SO4 = Li2SO4 + H2OxAl2O3x4SiO2. Метод используется для переработки руд, необогащённых сподуменом, если содержание в них Li2
O не менее 1%. Фосфатные минералы Л. легко разлагаются кислотами, однако по более новым методам их разлагают смесью гипса и извести при 950—1050°С с последующей водной обработкой спеков и осаждением из растворов карбоната Л. Металлический Л. получают электролизом расплавленной смеси хлоридов Л. и калия при 400—460°С (весовое соотношение компонентов 1:1). Электролизные ванны футеруются магнезитом, алундом, муллитом, тальком, графитом и др. материалами, устойчивыми к расплавленному электролиту; анодом служат графитовые, а катодом — железные стержни. Черновой металлический Л. содержит механические включения и примеси (К, Mg, Ca, Al, Si, Fe, но главным образом Na). Включения удаляются переплавкой, примеси — рафинированием при пониженном давлении. В настоящее время большое внимание уделяется металлотермическим методам получения Л.
Важнейшая область применения Л. — ядерная энергетика
. Изотоп 6Li — единственный промышленный источник для производства трития (см. Водород) по реакции: .
Сечения захвата тепловых нейтронов (s) изотопами Л. резко различаются: 6
Li 945, 7Li 0,033; для естественной смеси 67 (в барнах); это важно в связи с техническим применением Л. — при изготовлении регулирующих стержней в системе защиты реакторов. Жидкий Л. (в виде изотопа 7Li) используется в качестве теплоносителя в урановых реакторах. Расплавленный 7LiF применяется как растворитель соединений U и Th в гомогенных реакторах. Крупнейшим потребителем соединений Л. является силикатная промышленность, в которой используют минералы Л., LiF, Li2CO3 и многие специально получаемые соединения. В чёрной металлургии Л., его соединения и сплавы широко применяют для раскисления, легирования и модифицирования многих марок сплавов. В цветной металлургии литием обрабатывают сплавы для получения хорошей структуры, пластичности и высокого предела прочности. Хорошо известны алюминиевые сплавы, содержащие всего 0,1% Л., — аэрон и склерон; помимо лёгкости, они обладают высокой прочностью, пластичностью, стойкостью против коррозии и очень перспективны для авиастроения. Добавка 0,04% Л. к свинцово-кальциевым подшипниковым сплавам повышает их твёрдость и понижает трение. Соединения Л. используются для получения пластичных смазок. По значимости в современной технике Л. — один из важнейших редких элементов. В. Е. Плющев.
Литий в организме. Л. постоянно входит в состав живых организмов, однако его биологическая роль выяснена недостаточно. Установлено, что у растений Л. повышает устойчивость к болезням, усиливает фотохимическую активность хлоропластов в листьях (томаты) и синтез никотина (табак). Способность концентрировать Л. сильнее всего выражена среди морских организмов у красных и бурых водорослей, а среди наземных растений — у представителей семейства Ranunculaceae (василистник, лютик) и семейства Solanaceae (дереза). У животных Л. концентрируется главным образом в печени и лёгких. Лит.:
Плющев В. Е., Степин Б. Д., Химия и технология соединений лития, рубидия и цезия, М., 1970; Ландольт П., Ситтиг М., Литий, в кн.: Справочник по редким металлам, пер. с англ., М., 1965.Литийорганические соединения
Литийоргани'ческие соедине'ния
, соединения, содержащие связь углерод — литий, R — Li. Алифатические Л. с. — бесцветные кристаллические вещества (R = СН3, C2H5 трет-С4Н9), вязкие неперегоняющиеся жидкости (R = н - С3Н7 — н - C12H25) или низкоплавкие воскообразные вещества (R — высшие алкилы); хорошо растворимы в углеводородах (кроме CH3Li) и эфирах. Ароматические Л. с. — белые или желтоватые кристаллические вещества, нерастворимые в углеводородах, растворимые в эфирах. Обычно Л. с. получают при взаимодействии металлического лития с хлористыми или бромистыми алкилами (или арилами) в углеводородной или эфирной среде:
RX + 2Li ® Rli + LiX.
Полученные растворы непосредственно используют для синтеза различных классов соединений. При нагревании лития с ртутьорганическими соединениями (также в углеводородной среде) получают растворы Л. с., не содержащие галогенида лития. Из этих растворов могут быть выделены индивидуальные Л. с.
Л. с. вступают в те же реакции, что и магнийорганические соединения
(см. Гриньяра реакция), однако значительно превосходят последние по реакционной способности; крайне чувствительны к воздействию кислорода, влаги и углекислого газа, поэтому все операции с ними проводят в атмосфере сухого инертного газа (азота или аргона); с бромистым литием и эфиром образуют комплексы типа 2RLixLiBrx(C2H5)2O.