Примерно те же значения чувствительности достигаются при использовании фотографической регистрации ионов за счёт длительной экспозиции. Однако из-за малой точности измерения ионных токов и громоздкости устройств введения фотопластинок в вакуумную камеру анализатора фоторегистрация масс-спектров сохранила определенной значение лишь при очень точных измерениях масс, а также в тех случаях, когда необходимо одновременно регистрировать все линии масс-спектра из-за нестабильности источника ионов, например при элементном анализе в случае ионизации вакуумной искрой.
В СССР разрабатывается и выпускается много различной масс-спектральной аппаратуры. Принятая система индексов для М.-с. классифицирует приборы в основном не по типу устройства, а по назначению. Индекс состоит из двух букв (МИ — М.-с. изотопный, МХ — для химического анализа, МС — для физико-химических, в том числе структурных, исследований, МВ — прибор с высокой разрешающей способностью) и четырёх цифр, из которых первая указывает на используемый метод разделения ионов по массам (1 — в магнитном однородном поле, 2 — в магнитном неоднородном, 4 — магнито-динамический, 5 — время-пролётный, 6 — радиочастотный), вторая — на условия применения (1 — индикаторы, 2 — для производств, контроля, 3 — для лабораторных исследований, 4 — для спец. условий), а последние две являются номером модели. На
Рис. 5. Схема время-пролётного масс-анализатора. Пакет ионов с массами m1
и m2 (чёрные и белые кружки), «вброшенный» в анализатор через сетку 1, движется в дрейфовом пространстве 2 так, что тяжёлые ионы (m1 ) отстают от лёгких (m2 ); 3 — коллектор ионов.Рис. 2. Масс-спектр ториевого свинца (dm50%
— ширина пика на полувысоте; dm10% — ширина пика на уровне 1 /10 от максимальной интенсивности).Рис. 3. Схема статического магнитного анализатора с однородным магнитным полем; S1
и S2 — щели источника и приёмника ионов; ОАВ — область однородного магнитного поляРис. 12. На столе большого масс-спектрометра с двойной фокусировкой для структурно-химического анализа МС-3301 с разрешающей силой R~5 ·104
лежит миниатюрный масс-спектрометр МХ-6407М (обведён квадратом), применявшийся для исследований ионосферы на искусственных спутниках Земли.Рис. 9. Анализатор омегатрона.
Рис. 4. Пример масс-анализатора с двойной фокусировкой. Пучок ускоренных ионов, вышедших из щели S1
источника ионов, последовательно проходит через электрическое поле цилиндрического конденсатора, который отклоняет ионы на 90°, затем через магнитное поле, отклоняющее ионы ещё на 60°, и фокусируется в щель S2 приёмника коллектора ионов.Рис. 11. Циклотронно-резонансный масс-анализатор. Высокочастотное электрическое поле в области анализатора позволяет идентифицировать ионы с данной величиной m/е по резонансному поглощению энергии ионами при совпадении частоты поля и циклотронной частоты ионов.
Рис. 7. Квадрупольный масс-анализатор: 1 и 2 — входное и выходное отверстия анализатора; 3 — траектории ионов; 4 — генератор высокочастотного напряжения.
Рис. 1. Скелетная схема масс-спектрометра: 1 — система подготовки и введения исследуемого вещества; 2 — ионный источник; 3 — масс-анализатор; 4 — приемник ионов; 5 — усилитель; 6 — регистрирующее устройство; 7 — ЭВМ; 8 — система электрического питания; 9 — откачные устройства. Пунктиром обведена вакуумируемая часть прибора.
Рис. 6. Схема радиочастотного масс-анализатора: 1, 2, 3 — сетки, образующие трёхсеточный каскад, на среднюю сетку 2 подано высокочастотное напряжение Uвч
. Ионы с определённой скоростью и, следовательно, определённой массой, внутри каскада ускоряясь высокочастотным полем, получают больший прирост кинетической энергии, достаточный для преодоления тормозящего поля и попадания на коллектор.Рис. 8. Фарвитрон: 1 и 2 — электроды, между которыми колеблются ионы.
Рис. 10. Схема магнито-резонансного масс-анализатора; магнитное поле
Масс-спектроскопия