Читаем Большая Советская Энциклопедия (МА) полностью

  Советские математики участвуют в М. к. с 1928 (М. к. в Болонье). Показателем крупной роли советской математики в мировой математической науке может служить число обзорных докладов, поручаемых советским учёным: на М. к. 1966 и 1970 доля советских докладов составляла около 25 %.

  Л. С. Понтрягин, А. Б. Жижченко.

Математические общества

Математи'ческие о'бщества , добровольные общественные организации, объединяющие лиц (в масштабе города или всей страны), работающих в области математики. Первые М. о. возникли на рубеже 17—18 веков в Германии и Великобритании. Многие М. о. были созданы в 19 веке: например, Московское математическое общество (1867), Харьковское математическое общество (1879), Казанское физико-математическое общество (1890), Лондонское математическое общество (1865), М. о. Франции (1872), физико-математическое общество Японии (1884), Немецкий союз математиков (1890), Американское М. о. (1894) и другие. Обычно М. о. издают один или несколько журналов, в названиях которых, как правило, указывается название соответствующего М. о. (см. Математические журналы ). В СССР (начало 70-х годов) действуют Московское, Ленинградское, Новосибирское, Грузинское, Литовское и другие М. о.

Математические развлечения и игры

Математические развлечения и игры . Математическими развлечениями называют обычно разнообразные задачи и упражнения занимательного характера, требующие проявления находчивости, смекалки, оригинальности мышления, умения критически оценить условия или постановку вопроса: в частности — головоломки, задачи на превращение одной фигуры в другую путём разрезания и переложения частей, фокусы, основанные на вычислениях, математические игры. К математическим играм относят либо игры, имеющие дело с числами, фигурами и тому подобным, либо игры, исход которых может быть предопределён предварительным теоретическим анализом. С появлением и развитием математических игр теории термин «математические игры» (в смысле этой статьи) постепенно выходит из употребления.

  Игра Баше. Из кучки, содержащей n (например, 35) предметов, двое играющих берут поочерёдно не более чем по m (например, 5) предметов. Выигрывает тот, кто возьмёт последние предметы. Теория игры устанавливает, что если n не делится на m + 1, то начинающий игру непременно выиграет, если каждый раз будет оставлять партнёру число предметов, кратное m + 1 (в примере — кратное 6).

  Игра «15». Играет один человек. На шестнадцатиклеточной доске расположены в случайном порядке 15 перенумерованных шашек. Передвигая шашку одну за другой на свободную клетку с любой из смежных с ней клеток, требуется упорядочить расположение шашек (привести к нормальному расположению — положению 1, указанному на рисунке 1). Теоретический анализ игры, известный с 1879, показывает, что задача может быть решена только в том случае, если число инверсий (то есть число нарушений нормального расположения), образуемых номерами шашек в исходном положении, имеет ту же чётность, что и номер строки, в которой есть свободная клетка. Чтобы установить число инверсий, надо для каждой шашки подсчитать число предшествующих ей шашек с большим номером и сложить все эти числа; их сумма и равна искомому числу инверсий. При этом устанавливается следующая последовательность в исходном расположении шашек: слева направо вдоль строк и сверху вниз при переходе от одной строки к другой. Например, в расположении II (рис. 1 ) число инверсий чётно (равно 38), а свободная клетка находится в чётной (во 2-й) строке, то есть расположение II может быть приведено к нормальному. Напротив, расположение III привести к нормальному невозможно, так как число инверсий в нём нечётно (равно 1: шашка с № 15 предшествует шашке с № 14), а свободная клетка находится в 4-й строке (в строке с чётным номером).

  Полное математическое обоснование имеется также у таких М. р. и и., как вычерчивание фигур одним росчерком, лабиринты, комбинированные задачи на шахматной доске и другие. Большая группа М. р. и и. связана с поисками оригинальных и красивых решений задач, допускающих практически неисчерпаемое или даже бесконечное множество решений.

  К числу таких развлечений относится, например, «составление паркетов» — задача о заполнении плоскости правильно чередующимися фигурами одного и того же вида (например, одноимёнными правильными многоугольниками) или нескольких данных видов. Если «двухцветный квадратный паркет» с осями симметрии А’ А и B’B (см. рис. 2 ) составляется из 4n2 равных квадратов, каждый из которых разбит диагональю на белую и чёрную половины, то число различных паркетов равно 4n2 (это число быстро растет при возрастании n ).

Перейти на страницу:

Похожие книги

100 великих казаков
100 великих казаков

Книга военного историка и писателя А. В. Шишова повествует о жизни и деяниях ста великих казаков, наиболее выдающихся представителей казачества за всю историю нашего Отечества — от легендарного Ильи Муромца до писателя Михаила Шолохова. Казачество — уникальное военно-служилое сословие, внёсшее огромный вклад в становление Московской Руси и Российской империи. Это сообщество вольных людей, создававшееся столетиями, выдвинуло из своей среды прославленных землепроходцев и военачальников, бунтарей и иерархов православной церкви, исследователей и писателей. Впечатляет даже перечень казачьих войск и формирований: донское и запорожское, яицкое (уральское) и терское, украинское реестровое и кавказское линейное, волжское и астраханское, черноморское и бугское, оренбургское и кубанское, сибирское и якутское, забайкальское и амурское, семиреченское и уссурийское…

Алексей Васильевич Шишов

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии
Психология любви и секса. Популярная энциклопедия
Психология любви и секса. Популярная энциклопедия

Любовь и секс занимают очень заметное место в жизни человечества. Из-за любви люди лишают себя жизни, пишут стихи, возводят дворцы и начинают войны. Из-за секса идут в тюрьмы и ломают себе жизнь.Ученые установили, что наша жизнь управляется четырьмя основными потребностями: самосохранения, размножения, общения и потребностью в информации. Однако сексуальную потребность все-таки называют «основным инстинктом».Сложность изучения любви заключается в том, что это явление представляет собой неделимый сплав биологии, психологии и культуры, и представители каждой из этих наук могут досконально разобраться только в одной стороне этого феномена, а в результате любовь все равно остается загадочной и непознанной. Книга, которую вы держите в руках, представляет собой еще одну попытку понять это чудо. Эту чуму, которую Бог наслал на людей за их грехопадение, а может быть в награду за их стремление к совершенству.

Юрий Викторович Щербатых

Семейные отношения, секс / Энциклопедии / Психология / Образование и наука / Словари и Энциклопедии