Читаем Большая Советская Энциклопедия (МН) полностью

  Начиная с пятиугольника существуют также невыпуклые (самопересекающиеся, или звездчатые) правильные М., т. е. такие, у которых все стороны равны и каждая следующая из сторон повёрнута в одном и том же направлении и на один и тот же угол по отношению к предыдущей. Все вершины такого М. также лежат на одной окружности. Такова, например, пятиконечная звезда. На рис. 2 даны все правильные (как выпуклые, так и невыпуклые) М. от треугольника до семиугольника.

  Лит. см. при ст. Многогранник .

Рис. 1 к ст. Многоугольник.

Рис. 2 к ст. Многоугольник.

Многоугольник сил

Многоуго'льник сил, ломаная линия, которая строится для определения главного вектора (геометрической суммы) данной системы сил. Чтобы построить М. с. для системы сил F1, F2, ..., Fn (рис. , а), надо от произвольной точки а поочерёдно отложить в выбранном масштабе вектор , изображающий силу F1 , от его конца отложить вектор , изображающий силу F2 , и т. д. и от конца m предпоследней силы отложить вектор , изображающий силу Fn (рис. , б). Фигура abc ... mn и называется М. с. Вектор an , соединяющий в М. с. начало первой силы с концом последней, изображает геометрическую сумму R данной системы сил. Когда точка n совпадает с а , М. с. называется замкнутым; в этом случае R = 0. Правило М. с. может быть получено последовательным применением правила параллелограмма сил .

  Построением М. с. пользуются при графическом решении задач статики для систем сил, расположенных в одной плоскости.

Рис. к ст. Многоугольник сил.

Многоустки

Многоу'стки, класс червей; то же, что моногенетические сосальщики .

Многофотонные процессы

Многофото'нные проце'ссы, процессы взаимодействия электромагнитного излучения с веществом, сопровождающиеся поглощением или испусканием (или тем и другим) нескольких электромагнитных квантов (фотонов ) в элементарном акте.

  Основная трудность наблюдения М. п. — их чрезвычайно малая вероятность по сравнению с однофотонными процессами. В оптическом диапазоне до появления лазеров наблюдались только двухфотонные процессы при рассеянии света: резонансная флуоресценция (см. Люминесценция ), релеевское рассеяние света, Мандельштама — Бриллюэна рассеяние и комбинационное рассеяние света . При резонансной флуоресценции (рис. , а) атом или молекула поглощают в элементарном акте одновременно один фотон возбуждающего излучения ћ w1 и испускают один фотон ћ w2 той же самой энергии. Рассеивающий атом при этом снова оказывается на том же самом уровне энергии E1 . В элементарном акте бриллюэновского и комбинационного рассеяний в результате поглощения и испускания фотонов рассеивающая частица оказывается на уровне энергии, удовлетворяющем закону сохранения энергии для всего двухфотонного процесса в целом: увеличение энергии частицы E2E1 равно разности энергий поглощённого и испущенного фотонов ћ w1ћ w2 (рис. , б). После появления лазеров стало возможным наблюдение процессов многофотонного возбуждения, когда в элементарном акте одновременно поглощается несколько фотонов возбуждающего излучения (рис. , в). Так, при двухфотонном возбуждении атом или молекула одновременно поглощают два фотона ћ w1 и ћ w2 и оказываются в возбуждённом состоянии с энергией E2 = E1 + (ћ w1 + ћ w2 ) (см. Вынужденное рассеяние света , Нелинейная оптика ).

  Представление о М. п. возникло в квантовой теории поля для описания взаимодействия излучения с веществом. Это взаимодействие описывается через элементарные однофотонные акты поглощения и испускания фотонов, причём р -приближению теории возмущений соответствует элементарный акт с одновременным участием р фотонов; р -фотонный переход можно рассматривать как переход, происходящий в р этапов через р — 1 промежуточных состояний системы: сначала поглощается (или испускается) один фотон и система из состояния E переходит в состояние E1 , затем поглощается (или испускается) второй фотон и система оказывается в состоянии E2 и т. д.; наконец, в результате р элементарных однофотонных актов система оказывается в конечном состоянии Eр .

  В случае М. п. с поглощением или вынужденным испусканием р фотонов одинаковой частоты w величина вероятности перехода пропорциональна числу фотонов этой частоты в степени р , т. е. интенсивности излучения в этой степени.

Перейти на страницу:

Похожие книги