Изучение М. п. очень существенно для выяснения структуры адронов и построения теории сильных взаимодействий. В этом отношении особое значение имеют закономерности, установленные при изучении специального класса М. п. — т. н. инклюзивных процессов, когда из большого числа М. п., происходящих при столкновениях адронов «а» и «b», отбираются события с рождением определённой частицы «с» независимо от того, какие др. частицы (X) и в каком количестве сопровождают рождение частицы «с». На важность изучения инклюзивных процессов указал в 1967 А. А. Логунов
, установивший на основе квантовой теории поля предельные законы возрастания их сечения с ростом энергии (аналогичные теореме Фруассара). При экспериментальном исследовании инклюзивных процессов на Серпуховском ускорителе (1968) и сравнении полученных данных с результатами опытов при более низких энергиях был обнаружен своеобразный закон подобия в микромире — т. н. масштабная инвариантность, или скейлинг (scaling). Масштабная инвариантность состоит в том, что вероятность рождения «инклюзивной» частицы «с» с определённым значением продольного импульса pL
, (проекции импульса на направление движения сталкивающихся частиц) является при разных энергиях столкновения универсальной функцией от переменной Х
= pL/pмакс
, где рмакс
— максимально возможное (при данной энергии) значение продольного импульса частицы «с» (рис. 3
). Т. о., продольные импульсы вторичных частиц растут пропорционально энергии столкновения. Указания на существование такого рода зависимости получались ранее при изучении космических лучей. Она вытекала из того факта, что энергетический спектр вторичной компоненты космических лучей почти точно повторяет форму энергетического спектра первичной компоненты (Г. Т. Зацепин
и др.). Масштабная инвариантность имеет глубокий физический смысл. Объяснение её на основе модельных представлений о составном строении адронов было предложено в 1969 Р. Фейнманом
. (В 1963 на возможность такой закономерности указывал американский физик К. Уилсон.) Экспериментальные данные показывают, что масштабная инвариантность наблюдается при столкновениях не только элементарных частиц, но и атомных ядер при релятивистских энергиях.
Из-за отсутствия полной и последовательной теории сильных взаимодействий для объяснения эмпирических закономерностей, обнаруженных в М. п., используются различные теоретические модели. В статистико-гидродинамических моделях [развитых в работах В. Гейзенберга
, Э. Ферми
, Л. Д. Ландау
(1949—53) и др.] предполагается, что для сильно взаимодействующих частиц в течение короткого времени столкновения успевает установиться статистическое равновесие между образовавшимися в результате соударения частицами. Это позволяет рассчитать многие характеристики М. п., в частности среднюю множественность, которая должна расти с энергией по степенному закону Еn
с показателем степени n < 1 (в теории Ферми — Ландау n = 1
/4
). В другом классе моделей (итальянские физики Д. Амати, С. Фубини, А. Стангеллини и др., советские физики Е. Л. Фейнберг
, Д. С. Чернавский и др.) считается, что рождение вторичных частиц происходит в «периферических» или «мультипериферических» взаимодействиях адронов, возникающих в результате обмена между ними виртуальным p-мезоном или другой частицей. С конца 60-х гг. для теоретического анализа М. п. широко используется представление о том, что сильное взаимодействие при высоких энергиях осуществляется путём обмена особым состоянием — «реджеоном», являющимся как бы струей частиц с монотонно меняющимся от частицы к частице импульсом (см. Сильные взаимодействия
). Эти представления (развитые, в частности, советскими физиками В. Н. Грибовым, К. А. Тер-Мартиросяном и др.) позволяют количественно объяснить многие закономерности М. п. Согласно «мультипериферическим» моделям и модели «реджеонов», средняя множественность должна расти пропорционально логарифму энергии столкновения. Лит.:
Мурзин В. С., Capычева Л. И., Множественные процессы при больших энергиях, М., 1974 (в печати); Беленький С. З., Ландау Л. Д., Гидродинамическая теория множественного образования частиц, «Успехи физических наук», 1955, т. 56, в. 3, с. 309; Фейнберг Е. Л., Множественная генерация адронов и статистическая теория, там же, 1971, т. 104, в. 4, с. 539; Feynman R., Very high-energy collisions of hadrons, «Physical Review Letters», 1969, v. 23, p. 1415; Ежела В. В. [и др.]. Инклюзивные процессы при высоких энергиях, «Теоретическая и математическая физика», 1973, т. 15, № 2; Тер-Мартиросян К. А., Процессы образования частиц при высокой энергии, в кн.: Материалы 6-й зимней школы по теории ядра и физике высоких энергий, ч. 2, Л., 1971, с. 334; Розенталь И. Л., Множественные процессы при больших энергиях, «Природа», 1973, № 12. С. С. Герштейн.