Читаем Большая Советская Энциклопедия (НА) полностью

«Нача'ла» Евкли'да (греч. Stoich'eia, буквально — азбука; переносное значение — основные начала), научное произведение, написанное Евклидом в 3 в. до н. э., содержащее основы античной математики: элементарной геометрии, теории чисел, алгебры, общей теории отношений и метода определения площадей и объёмов, включавшего элементы теории пределов. Евклид подвёл в этом сочинении итог трехсотлетнему развитию греческой математики и создал прочный фундамент для дальнейших математических исследований. «Н.» Е. не являются, однако, энциклопедией математических знаний своей эпохи. Так, в «Н.» Е. не излагается теория конических сечений, которая была тогда достаточно развита, отсутствуют здесь и вычислительные методы.

  «Н.» Е. построены по дедуктивной системе: сначала приводятся определения, постулаты и аксиомы, затем формулировки теорем и их доказательства (см. Дедукция ). Вслед за определением основных геометрических понятий и объектов (например, точки, прямой) Евклид доказывает существование остальных объектов геометрии (например, равностороннего треугольника) путём их построения, которое выполняется на основании пяти постулатов. В постулатах утверждается возможность выполнения некоторых элементарных построений, например «что от всякой точки до всякой точки (можно) провести прямую линию» (1 постулат); «И что от всякого центра и всяким раствором (может быть) описан круг» (III постулат). Особое место среди постулатов занимает V постулат (аксиома о параллельных): «И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти прямые неограниченно встретятся с той стороной, где углы меньше двух прямых». Относительная сложность формулировки привела к стремлению многих математиков (на протяжении почти 2 тыс. лет) вывести его как теорему из др. основных положений геометрии. Попытки доказать V постулат продолжались вплоть до работ Н. И. Лобачевского , построившего первую систему неевклидовой геометрии, в которой этот постулат не выполняется (см. Лобачевского геометрия ). За постулатами в «Н.» Е. приводятся аксиомы — предложения о свойствах отношений равенства и неравенства между величинами. Например: «Равные одному и тому же равны и между собой» (1-я аксиома); «И целое больше части» (8-я аксиома).

  С современной точки зрения система аксиом и постулатов «Н.» Е. недостаточна для дедуктивного построения геометрии. Так, здесь нет ни аксиом движения, ни аксиом конгруэнтности (за исключением одной). Отсутствуют также аксиомы расположения и непрерывности. Фактически же Евклид использует при доказательствах и движение и непрерывность. Логические недостатки построения «Н.» Е. полностью выяснились лишь в конце 19 в. после работ Д. Гильберта (см. Евклидова геометрия ). До этого на протяжении более 2 тыс. лет «Н.» Е. служили образцом научной строгости; по этой книге в полном либо в сокращённом и переработанном виде изучали геометрию.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже