Читаем Большая Советская энциклопедия (На) полностью

  Для построения более наглядных обратимых изображений в Н. г. применяется другой способ, называемый аксонометрией.

  При аксонометрии изображаемую фигуру относят к системе Oxyz осей координат в пространстве (см. Аналитическая геометрия ). Эту систему координат называют натуральной. На рис.6построена координатная ломаная OMx M1 M для произвольной точки М. Длины координатных отрезков OMx , Mx M1 , M1 M являются координатами х, у, z точки М. Если спроектировать натуральную систему осей Охуz на плоскость П', то получается так называемая аксонометрическая система осей О'х'у'z' (рис. 6). Проекция O'M'x M'1 M' координатной ломаной состоит из отрезков O'M'x , M'x M'1 , M'1 M', длины которых x', y', z' в аксонометрической системе координат называется аксонометрическими координатами точки М. Отношения

выражают величины искажения координатных отрезков при проектировании; их называют показателями (коэффициентами) искажения. Если все три показателя искажения равны, то аксонометрию называют изометрией, если хотя бы два из них равны — диметрией, если же все показатели искажения неравны — триметрией.

  Чтобы при помощи аксонометрического способа построить изображение точки М на плоскости П' в данной параллельной проекции, необходимо иметь: а) натуральные координаты этой точки М (х, у, z ); б) аксонометрическую систему осей О'х'у'z' на плоскости проекций П'; в) показатели искажения u, v, w.

Тогда по формулам (*) находят аксонометрические координаты точки М' (х', у', z' ) и строят по ним точку M', являющуюся искомой проекцией точки М. Аксонометрическое изображение пространственной фигуры строят по точкам, определяющим последнюю. Аксонометрический чертёж обратим: если на аксонометрическом чертеже дана точка M' (х', у', z' ), то можно по формулам (*) найти натуральные координаты х, у, z точки М.

Если задать произвольную аксонометрическую систему осей O'x'y'z' на плоскости проекций П' (не сводящуюся, однако, к одной прямой) и отношение показателей искажения u: v: w, то, согласно основной теореме аксонометрии (Польке теореме ), существует такое положение натуральной системы осей координат относительно плоскости проекций П' и такое направление проектирования, при которых на плоскости П' реализуются ранее выбранная аксонометрическая система осей и отношений показателей искажения.

  Для упрощения аксонометрического способа построения изображений пользуются «приведённой» аксонометрией, в которой аксонометрические координаты стремятся по возможности заменить натуральными без искажения вида чертежа. Так, например, на рис. 7дана ортогональная изометрия объекта, изображенного на комплексном чертеже (рис. 5), с использованием натуральных координат вместо аксонометрических. При этом происходит изменение масштаба аксонометрического чертежа, но вид его сохраняется, т. е. чертёж изменяется подобно. Аксонометрические изображения предметов, не имеющих большого протяжения, обладают достаточной наглядностью. Этого нельзя сказать об изображениях крупных объектов, таких, как здания, плотины и др. сооружения. В этих случаях предпочтительнее применять изображения, выполненные в центральной проекции (перспективе ).

Чтобы перспективный чертёж был обратимым, на плоскости проекций П' строят центральную проекцию A' (перспективу) изображаемой точки А и перспективу A1 ' ортогональной проекции A1 точки на горизонтальную плоскость П1 , называемую предметной (рис. 8). Плоскость проекций П' (картинную плоскость) выбирают преимущественно перпендикулярной к предметной. Точка A1 называется основанием точки А. В частности, S1 есть основание центра проекций («глаза») S . Зная положение центра S относительно картинной плоскости П', можно по данным перспективе A' точки А и перспективе A'1 её основания найти положение натуральной точки А в пространстве. Для этого нужно провести SA1 ' и найти A1 . Затем построить A1 A ^ плоскости П1 и найти точку А пересечения прямых SA' и A1 A. Большое значение при построении перспективных изображений имеют т. н. точки схода, являющиеся перспективными изображениями бесконечно удалённых точек пространства, и линия горизонта — перспективное изображение бесконечно удалённой прямой предметной плоскости П1 .

На рис. 9показано перспективное изображение комнаты. На нём видна главная точка y’ ¥ , которая является точкой схода для всех прямых, перпендикулярных (в натуре) картинной плоскости, и линия горизонта h. Точки схода др. параллельных прямых, лежащих в предметной плоскости, располагаются на линии горизонта h (например, D'¥ ).

  Используя координатный метод, можно выполнить построение перспективного изображения по способу центральной аксонометрии, аналогично описанной выше параллельной аксонометрии.

  Наряду с построениями перспективных изображений на плоскости (линейная перспектива) на практике употребляются и др. виды центрально-проекционных изображений.

Перейти на страницу:

Все книги серии Большая Советская энциклопедия

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука