С водородом Nb образует твёрдый раствор внедрения (до 10 ат.% Н) и гидрид состава от NbH0,7
до NbH. Растворимость водорода в Nb (в г/см3) при 20 °С 104, при 500 °С 74,4, при 900 °С 4,0. Поглощение водорода обратимо: при нагревании, особенно в вакууме, водород выделяется; это используют для очистки Nb от водорода (сообщающего металлу хрупкость) и для гидрирования компактного Nb: хрупкий гидрид измельчают и дегидрируют в вакууме, получая чистый порошок Н. для электролитич. конденсаторов. Растворимость азота в Н. составляет (% по массе) 0,005, 0,04 и 0,07 соответственно при 300, 1000 и 1500 °С. Рафинируют Н. от азота нагреванием в глубоком вакууме выше 1900 °С или вакуумной плавкой. Высший нитрид NbN светло-серого цвета с желтоватым оттенком; температура перехода в сверхпроводящее состояние 15,6 К. С углеродом при 1800—2000 °С Nb образует 3 фазы: a-фаза — твёрдый раствор внедрения углерода в Н., содержащий до 2 ат.% С при 2335 °С; b-фаза — Nb2C, d-фаза — NbC. С галогенами Н. даёт галогениды, оксигалогениды и комплексные соли. Из них наиболее важны и лучше других изучены пентафторид NbF5, пентахлорид NbCl5, окситрихлорид NbOCI3, фторониобат калия K2NbF7 и оксифторониобат калия K2NbOF7 · H2O. Небольшое различие в давлении паров NbCl5 и TaCl5 используют для их весьма полного разделения и очистки методом ректификации. Получение и применение. Руды Nb — обычно комплексные и бедны Nb, хотя их запасы намного превосходят запасы руд Та (см. Ниобиевые руды
). Рудные концентраты содержат Nb2O5: пирохлоровые — не менее 37%, лопаритовые — 8%, колумбитовые — 30—60%. Большую их часть перерабатывают алюмино- или силикотермическим восстановлением на феррониобий (40—60% Nb) и ферротанталониобий. Металлический Nb получают из рудных концентратов по сложной технологии в три стадии: 1) вскрытие концентрата, 2) разделение Nb и Ta и получение их чистых химических соединений, 3) восстановление и рафинирование металлического Н. и его сплавов. Основные промышленные методы производства Nb и сплавов — алюминотермический, натриетермический, карботермический: из смеси Nb2O5 и сажи вначале получают при 1800 °С в атмосфере водорода карбид, затем из смеси карбида и пятиокиси при 1800—1900 °С в вакууме — металл; для получения сплавов Н. в эту смесь добавляют окислы легирующих металлов (см. Ниобиевые сплавы); по другому варианту Н. восстанавливают при высокой температуре в вакууме непосредственно из Nb2O5 сажей. Натриетермическим способом Н. восстанавливают натрием из K2NbF7, алюминотермическим— алюминием из Nb2O5. Компактный металл (сплав) производят методами порошковой металлургии, спекая спрессованные из порошков штабики в вакууме при 2300 °С, либо электроннолучевой и вакуумной дуговой плавкой; монокристаллы Nb высокой чистоты — бестигельной электроннолучевой зонной плавкой. Применение и производство Н. быстро возрастают, что обусловлено сочетанием таких его свойств, как тугоплавкость, малое сечение захвата тепловых нейтронов (1,15 б
), способность образовывать жаропрочные, сверхпроводящие и др. сплавы, коррозионная стойкость, геттерные свойства, низкая работа выхода электронов, хорошие обрабатываемость давлением на холоду и свариваемость. Основные области применения Н.: ракетостроение, авиационная и космическая техника, радиотехника, электроника, хим. аппаратостроение, атомная энергетика. Из чистого Н. или его сплавов изготовляют детали летательных аппаратов; оболочки для урановых и плутониевых тепловыделяющих элементов; контейнеры и трубы для жидких металлов; детали электрических конденсаторов; «горячую» арматуру электронных (для радарных установок) и мощных генераторных ламп (аноды, катоды, сетки и др.); коррозионноустойчивую аппаратуру в химической промышленности. Ниобием легируют др. цветные металлы, в том числе уран. Н. применяют в криотронах — сверхпроводящих элементах вычислительных машин, а станнид Nb3Sn и сплавы Nb с Ti и Zr — для изготовления сверхпроводящих соленоидов. Nb и сплавы с Ta во многих случаях заменяют Ta, что даёт большой экономический эффект (Nb дешевле и почти вдвое легче, чем Ta). Феррониобий вводят в нержавеющие хромоникелевые стали для предотвращения их межкристаллитной коррозии и разрушения и в стали др. типов для улучшения их свойств. Применяют и соединения Н.: Nb2O5 (катализатор в химической промышленности; в производстве огнеупоров, керметов, специальных стекол), нитрид, карбид, ниобаты. Лит.:
Зеликман А. Н., Меерсон Г. А., Металлургия редких металлов, М., 1973; Ниобий, тантал и их сплавы, пер. с англ., М., 1966; Недюха И. М., Черный В. Г., Ниобий — металл космической эры, Киев, 1965; Ниобий и тантал. Сб. [переводных ст.], под ред. О. П. Колчина, М., 1961; Филянд М. А., Семенова Е. И., Свойства редких элементов [Справочник], 2 изд., М., 1964. О. П. Колчин.
Нионское соглашение 1937