Одноро'дная фу'нкция
, функция одного или нескольких переменных, удовлетворяющая следующему условию: при одновременном умножении всех аргументов функции на один и тот же (произвольный) множитель значение функции умножается на некоторую степень этого множителя, т. е. для О. ф. f (x, y,..., u) при всех значениях х, у,..., u и любом l должно иметь место равенство:f
(lx, lу,..., lu) = lnf (х, y,..., u), где n —
некоторый определённый показатель («показатель однородности», или «измерение О. ф.»). Например, функциих2
— 2у2; (x—y—3z)/z2+xyz2; суть однородные с измерениями, соответственно, 2, —1, 4
/3. Из дифференциальных свойств О. ф. отметим одно (теорема Эйлера), вполне характеризующее О. ф. измерения n, а именно: если в выражении полного дифференциала такой функции f (x, у,..., u) заменить дифференциал каждого независимого переменного самим этим переменным, то получают функцию f (x, у,..., u), умноженную на показатель однородности: .
О. ф. часто встречаются в геометрических формулах. В соотношении х =f (а, b,..., l), где а, b,..., l — длины отрезков, измеренные одним и тем же произвольным масштабом, правая часть должна быть О. ф. (измерения 1, 2 или 3, смотря по тому, означает ли х длину, площадь или объём). Например, в формуле для объёма
усечённого конуса правая часть — О.ф. h, R и r измерения 3. Однородное уравнение
Одноро'дное уравне'ние
, уравнение, не меняющее своего вида при одновременном умножении всех (или только некоторых) неизвестных на одно и то же произвольное число. Во втором случае уравнение называется однородным по отношению к соответствующим неизвестным. Так, ху + yz + zx = 0 есть О. у. по отношению ко всем неизвестным, уравнение однородно по отношению к х и z. Левая часть о. у. является однородной функцией. Уравнениеa0
(x) y (n) + a1(x) y (n-1) + ... + an (x) y = 0, называемое линейным однородным дифференциальным уравнением, однородно по отношению к у, у',
..., y (n-1), y (n). Уравнение у' = f (х, у), где f (x, y) = f (lx, lу) при любом l [f (x, y) — однородная функция со степенью однородности 0], называется дифференциальным уравнением, однородным по отношению к переменным x и у. Пример: .Однородные координаты
Одноро'дные координа'ты
точки, прямой и т.д., координаты, обладающие тем свойством, что определяемый ими объект не меняется, когда все координаты умножаются на одно и то же число. Например, О. к. точки М на плоскости могут служить три числа: X, Y, Z, связанные соотношением X : Y : Z = х : у : 1, где х и у — декартовы координаты точки М. Введение О. к. позволяет добавить к точкам евклидовой плоскости точки с третьей О. к., равной нулю (т. н. бесконечно удалённые точки), что важно для проективной геометрии. См. также Координаты. Односвязная область
Односвя'зная о'бласть
, плоская область, обладающая тем свойством, что для любой замкнутой непрерывной кривой, принадлежащей области, часть плоскости, ограниченная этой кривой, принадлежит области. Например, внутренность круга, квадрата, треугольника — О. о. Внутренность кругового кольца не является О. о. — это двусвязная область (см. Многосвязная область). Односемядольные
Односемядо'льные
, односемянодольные, класс покрытосеменных растений; то же, что однодольные. Одностороннее движение
Односторо'ннее движе'ние
, метод регулирования дорожного движения путём использования всей ширины проезжей части улицы или дороги для движения транспортных средств только в одном направлении. Иногда при организации О. д. сохраняют встречное движение маршрутных автобусов или троллейбусов; в некоторых случаях режим О. д. вводят на определённые промежутки времени. При введении О. д. пропускная способность проезжей части и скорость движения возрастают в среднем на 10—12%, а количество дорожно-транспортных происшествий существенно уменьшается. Улицы с О. д. существовали ещё в древней Помпее. В 1906 О. д. было введено на улицах г. Филадельфия (США). О. д. широко распространено во многих городах мира; в частности, в Париже примерно на 30% улиц организовано О. д. В ряде городов СССР (Москва, Ленинград, Рига, Вильнюс, Баку, Куйбышев, Горький и др.) на улицах также принято О. д.
Лит.:
Страментов А. Е., Фишельсон М. С., Городское движение, 2 изд., М., 1965; Поляков А. А., Организация движения на улицах и дорогах, М., 1965; Метсон Т. М., Смит У. С., Хард Ф., Организация движения, пер. с англ., М., 1960. М. Б. Афанасьев.
Односторонние поверхности