Читаем Большая Советская Энциклопедия (ОГ) полностью

  Соч.: Works. Biographical ed., v. 1—18, N. Y., 1925; в рус. пер. — Избр. произв., т. 1—2, М., 1959.

  Лит.: Левидова И., О. Генри и его новелла, М., [1973]; Current-Garcia E., O. Henry, N. Y., 1965; O'Connor R., O. Henry, Garden City (N. Y.), 1970.

  И. М. Левидова.

О'Генри.

О'Генри. «Милый жулик». Нью-Йорк. 1917 (илл. неизвестного художника).

Огибающая

Огиба'ющая семейства линий на плоскости (поверхностей в пространстве), линия (поверхность), которая в каждой своей точке касается одной линии (поверхности) семейства, геометрически отличной от О. в сколь угодно малой окрестности точки касания (см. Семейство линий, Семейство поверхностей). Уравнение О. семейства линий на плоскости, определяемого уравнением f (х, у, С) = 0, содержащим параметр С, можно получить [в предположении, что f (х, у, С) имеет непрерывные частные производные 1-го порядка по всем трём аргументам], исключив параметр С из системы:

f (x, у, С) = 0, f 'c (х, у, С) = 0.

  Это исключение, вообще говоря, даёт не только О., но и геометрическое место особых точек линий семейства, т. е. точки, для которых одновременно f 'x = 0, f 'y = 0.

  Примеры (на плоскости): а) семейство окружностей радиуса R, центры которых лежат на одной прямой, имеет в качестве О. пару прямых, параллельных линии центров и отстоящих от неё в ту и другую сторону на расстояние R (см. рис. 1); б) всякая кривая служит О. для семейства своих касательных и семейства своих кругов кривизны; в) если в каждой точке кривой построить к ней нормаль, то для полученного семейства прямых О. будет эволюта (см. Эволюта и эвольвента) данной кривой (на рис. 2 изображена эволюта эллипса).

  В пространстве для семейств поверхностей могут существовать О., касающиеся поверхностей семейства в точках или же вдоль некоторых линий. Примеры: а) семейство сфер радиуса R с центрами, расположенными на одной прямой, имеет своей О. круглый цилиндр радиуса R, ось которого есть линия центров (касание цилиндра с каждой сферой — по окружности); б) семейство сфер радиуса R, центры которых лежат в одной плоскости, имеет О. пару плоскостей, параллельных плоскости центров и отстоящих от неё в ту и другую сторону на расстояние R (касание плоскостей каждой сферой — точке).

  Понятие О. имеет значение не только в геометрии, но и в некоторых вопросах математического анализа (особые решения в теории дифференциальных уравнений), теоретической физики (в оптике — каустика, фронт волны).

  Лит.: Толстов Г. П., К отысканию огибающей семейства плоских кривых, «Успехи математических наук», 1952, т. 7, в. 4; Ла Валле-Пуссен Ш.-Ж. де, Курс анализа бесконечно малых, пер. с франц., т. 2, Л. — М., 1933; Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971.

Рис. 1 к ст. Огибающая.

Рис. 2 к ст. Огибающая.

ОГИЗ

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 знаменитых харьковчан
100 знаменитых харьковчан

Дмитрий Багалей и Александр Ахиезер, Николай Барабашов и Василий Каразин, Клавдия Шульженко и Ирина Бугримова, Людмила Гурченко и Любовь Малая, Владимир Крайнев и Антон Макаренко… Что объединяет этих людей — столь разных по роду деятельности, живущих в разные годы и в разных городах? Один факт — они так или иначе связаны с Харьковом.Выстраивать героев этой книги по принципу «кто знаменитее» — просто абсурдно. Главное — они любили и любят свой город и прославили его своими делами. Надеемся, что эти сто биографий помогут читателю почувствовать ритм жизни этого города, узнать больше о его истории, просто понять его. Тем более что в книгу вошли и очерки о харьковчанах, имена которых сейчас на слуху у всех горожан, — об Арсене Авакове, Владимире Шумилкине, Александре Фельдмане. Эти люди создают сегодняшнюю историю Харькова.Как знать, возможно, прочитав эту книгу, кто-то испытает чувство гордости за своих знаменитых земляков и посмотрит на Харьков другими глазами.

Владислав Леонидович Карнацевич

Неотсортированное / Энциклопедии / Словари и Энциклопедии