О. ц. применяются и в капиталистических странах. Это цены, которые используются в обороте между изготовителями товаров и оптовыми торговцами, а также между оптовыми и розничными торговцами. Близкими к О. ц. являются т. н. цены производителей, т. е. предприятий, фирм и корпораций, изготовляющих продукцию. Они состоят, как правило, из издержек производства данного предприятия, расходов по хранению на предприятии, процентов за используемый кредитных и денежных сборов, расходов по доставке, проверке, испытанию и регулировке продукции при реализации, издержек на рекламу и прибыли. О. ц. последующих звеньев включают в качестве основного компонента О. ц. предыдущего товаропроводящего звена. Среднегодовой темп прироста индекса О. ц. в развитых капиталистических странах в 1957—70 составлял 1,5%, в 1970—72 он возрос до 2—2,5%. Под действием инфляции
О. ц. на промышленное товары выросли в 1972—73 (по сравнению с 1963) в США более чем на 30, ФРГ — более чем на 20, Италии — почти на 40, Японии — на 25% и т.д.
Лит
. см. при ст. Цена
,Ценообразование
.
Г. И. Кабко. В. Е. Рыбалкин.
Оптовая цена предприятия
Опто'вая цена' предприя'тия
, см.
оптовая цена
.
Оптовая цена промышленности
Опто'вая цена' промы'шленности
, см. Оптовая цена
.
Оптоэлектроника
Оптоэлектро'ника
, направление электроники, охватывающее вопросы использования оптических и электрических методов обработки, хранения и передачи информации. О. возникла как этап развития радиоэлектроники
и вычислительной техники
, тенденцией которых является непрерывное усложнение систем при возрастании их информационных и технико-экономических показателей (увеличение надёжности
, быстродействия, уменьшение размеров и веса, см. Микроэлектроника
). Идея использования света для обработки и передачи информации уже давно реализована: большая группа фотоприёмников (фотоэлементов
,фотоэлектронных умножителей
, фоторезисторов, фотодиодов, фототранзисторов и пр.) служит для преобразования световых сигналов в электрические. Существуют также и преобразователи последовательности электрических сигналов в видимое изображение (см. Электроннолучевые приборы
). Вся же обработка информации в электрических трактах радиоэлектронных устройств осуществлялась вакуумными и полупроводниковыми приборами.
О. отличается от вакуумной и полупроводниковой электроники
наличием в цепи сигнала оптического звена или оптической (фотонной) связи. Достоинства О. определяются в первую очередь преимуществами оптической связи
по сравнению с электрической, а также теми возможностями, которые открываются в результате использования разнообразных физических явлений, обусловленных взаимодействием световых полей с твёрдым телом
.
Из-за электрической нейтральности фотонов в оптическом канале связи не возбуждаются электрические и магнитные поля, сопутствующие протеканию электрического тока. Иными словами, фотоны не создают перекрестных помех в линиях связи и обеспечивают полную электрическую развязку между передатчиком и приёмником, что принципиально недостижимо в цепях с электрической связью. Передача информации с помощью светового луча (см. Модуляция света
) не сопровождается накоплением и рассеиванием электромагнитной энергии в линии. Отсюда — отсутствие существенного запаздывания сигнала в канале связи, высокое быстродействие и минимальный уровень искажения передаваемой информации, переносимой сигналом.
Высокая частота оптических колебаний (1014
—1015
гц
) обусловливает большой объём передаваемой информации и быстродействие. Соответствующая оптической частоте малая длина волны (до 10–4
—10–5
см
) открывает пути для микроминиатюризации передающих и приёмных устройств О., а также линии связи. Минимальные поперечные размеры светового луча — порядка длины волны l. Информационная ёмкость такого канала вследствие его большой широкополосности чрезвычайно высока.
Идеи О. возникли ещё в 1955, но известные в то время средства для взаимного преобразования электрических и оптических сигналов и для осуществления оптической связи не обеспечивали необходимых эффективности, быстродействия, мощности светового потока, возможности микроминиатюризации. О. начала интенсивно развиваться лишь с 1963—65, после того как появились лазеры
, полупроводниковые светоизлучающие диоды
и волоконная оптика
.