Все разделы О. имели и имеют многочисленные практические применения. Задачи рационального освещения улиц, помещений, рабочих мест на производстве, зрелищ, исторических и архитектурных памятников и пр. решаются светотехникой
на основе геометрической О. и фотометрии, учитывающей законы физиологической О.; при этом используются достижения физической О. (например, для создания люминесцентных источников света
) и оптические технологии (изготовление зеркал, светофильтров
, экранов и т.д.). Одна из важнейших традиционных задач О. — получение изображений, соответствующих оригиналам как по геометрической форме, так и по распределению яркости (иконика), решается главным образом геометрической О. с привлечением физической О. (для установления разрешающей способности
приборов и систем, учёта зависимости показателя преломления от l-дисперсии света
и др.). Геометрическая О. даёт ответ на вопрос, как следует построить оптическую систему для того, чтобы каждая точка объекта изображалась бы также в виде точки при сохранении геометрического подобия изображения объекту. Она указывает на источники искажений изображения и их уровень в реальных оптических системах (см. Аберрации оптических систем
). Для построения оптических систем существенна технология изготовления оптических материалов (стёкол, кристаллов, оптической керамики и пр.) с требуемыми свойствами, а также технология обработки оптических элементов. Из технологических соображений чаще всего применяют линзы
и зеркала
со сферическими поверхностями, но для упрощения оптических систем и повышения качества изображений при высокой светосиле
используют и асферические оптические элементы. Новые возможности получения оптических образов без применения фокусирующих систем даёт голография
, основанная на однозначной связи формы тела с пространственным распределением амплитуд и фаз распространяющихся от него световых волн. Для регистрации поля с учётом распределения фаз волн в голографии на регистрируемое поле накладывают дополнит. когерентное поле и фиксируют (на фоточувствительном слое или др. методами) возникающую при этом интерференционную картину. При рассматривании полученной т.о. голограммы в когерентном (монохроматическом) свете получается объёмное изображение предмета. Появление источников интенсивных когерентных световых полей (лазеров) дало толчок широкому развитию голографии. Она находит применение при решении многих научных и технических проблем. С помощью голографии получают пространственные изображения предметов, регистрируют (при импульсном освещении) быстропротекающие процессы, исследуют сдвиги и напряжения в телах и т.д.
Оптические явления и методы, разработанные в О., широко применяются для аналитические целей и контроля в самых различных областях науки и техники. Особенно большое значение имеют методы спектрального анализа
и люминесцентного анализа
, основанные на связи структуры атомов и молекул с характером их спектров испускания и поглощения, а также спектров комбинационного рассеяния света
. По виду спектров и их изменению со временем или под действием на вещество внешних факторов можно установить молекулярный и атомный состав, агрегатное состояние, температуру вещества, исследовать кинетику протекающих в нём физических и химических процессов. Применение в спектроскопии
лазеров обусловило бурное развитие нового её направления — лазерной спектроскопии. Спектральный и люминесцентный анализ используют в различных областях физики, астрофизике, геофизике и физике моря, химии, биологии, медицине, технике, в ряде гуманитарных наук — искусствоведении, криминалистике и пр. Чрезвычайно высокая точность измерительных методов, основанное на интерференции света, обусловила их большое практическое значение. Интерферометры
широко применяют для измерений длин волн и изучения структуры спектральных линий
, определения показателей преломления прозрачных сред, абсолютных и относительных измерений длин, измерений угловых размеров звёзд и др. космических объектов (см. Звёздный интерферометр
). В промышленности интерферометры используют для контроля качества и формы поверхностей, регистрации небольших смещений, обнаружения по малым изменениям показателя преломления непостоянства температуры, давления или состава вещества и т.д. Созданы лазерные интерферометры с уникальными характеристиками, резко расширившие возможности интерференционных методов за счёт большой мощности и высокой монохроматичности излучения лазеров.