Пионы сильно взаимодействуют с атомными ядрами, вызывая, в частности, их расщепление (рис. 1
, а). Пробег пионов в веществе до ядерного взаимодействия зависит от их энергии и составляет, например, в графите для p- мезонов около 13 см при энергии 200 Мэв и около 30 см при энергии 3 Гэв. При энергиях менее 50 Мэв пробег заряженных пионов в веществе определяется в основном потерями энергии на ионизацию атомов, так что, замедляясь, они обычно не успевают до своей остановки провзаимодействовать с ядрами. Так, пробег до остановки в ядерной фотоэмульсии p+ или p- с энергией 15 Мэв равен примерно 4,7 мм. При этом остановившийся p+ распадается на положительный мюон и нейтрино (рис. 2), p- захватывается ближайшим атомом, образуя мезоатом; последующий ядерный захват p--мезона происходит с мезоатомных орбит и приводит к расщеплению ядра (рис. 1, б).
p-мезоны в значительной степени определяют состав космических лучей в пределах земной атмосферы. Являясь основными продуктами ядерных взаимодействий частиц первичного космического излучения (протонов и более тяжёлых ядер) с ядрами атомов атмосферы, пионы входят в состав ядерно-активной компоненты космических лучей; распадаясь, p+- и p--мезоны создают проникающую компоненту космического излучения — мюоны и нейтрино высоких энергий, а p-мезоны — электронно-фотонную компоненту.
История открытия.
Гипотеза о существовании пионов как «переносчика» ядерных сил была высказана японским физиком Х. Юкава в 1935 для объяснения короткодействующего характера и большой величины ядерных сил. Из неопределённостей соотношениядля энергии и времени следовало, что если действующие между нуклонами (протонами и нейтронами) в ядре силы обусловлены обменом квантами поля ядерных сил, то масса этих квантов (позднее они были названы p-мезонами) должна составлять около 300 электронных масс. Частицы приблизительно такой массы были обнаружены в 1936—37 в космических лучах. Однако они не обладали свойствами частиц, предсказанных Юкавой (см.Мюон). Поиски заряженных p-мезонов увенчались успехом лишь в 1947, когда английскими учёными С. Латтесом, Х. Мюирхедом, Дж. Оккиалини и С. Ф. Пауэллом были найдены в ядерных фотоэмульсиях, облученных космическими лучами на большой высоте над поверхностью Земли, треки частиц, свидетельствующие о распаде p+ ® m+ + nm (см. рис. 2). В лабораторных условиях заряженные пионы были впервые получены в 1948 на ускорителе в Беркли (США). Существование нейтральных пионов вытекало из обнаруженной на опыте зарядовой независимости ядерных сил (взаимодействие между одинаковыми нуклонами — двумя протонами или двумя нейтронами — может осуществляться только обменом нейтральными пионами). Экспериментально p°-мезоны были впервые обнаружены в 1950 по g-квантам от их распада; p рождались в столкновениях фотонов и протонов высокой энергии (около 330 Мэв) с ядрами. Обладая массой покоя mp, пионы требуют для своего образования («рождения») затраты энергии, не меньшей их энергии покоя mpс2. Так, для протекания реакции р + р ® р + р + p необходимо, чтобы кинетическая энергия налетающего протона р превышала пороговую энергию, которая в лабораторной системе координат составляет около 282 Мэв. Пороговая энергия образования пионов на тяжёлых ядрах ниже, чем на протонах, и близка к mpс2.
Источники пионов. Одним из важнейших источников пионов в природе, как уже говорилось, являются космические лучи. Под действием первичной компоненты космических лучей пионы рождаются в верхних слоях атмосферы, но из-за ядерного поглощения и распада до уровня моря доходит лишь их незначительная часть. Исследования космических лучей на высокогорных станциях и с помощью аппаратов, вынесенных в верхние слои атмосферы и космическое пространство, дают важные сведения о пионах и их взаимодействиях. Однако количественное изучение свойств пионов выполняется преимущественно на пучках частиц высокой энергии, получаемых на ускорителях протонов и электронов. На ускорителях были установлены квантовые числа пионов, произведены точные измерения масс, времён жизни, редких способов распада, детально изучены реакции, вызываемые пионами. Современные ускорители создают пучки пионов высокой энергии (десятки Гэв) с потоками ~ 107 пионов в 1 сек, а так называемые «мезонные фабрики» (сильноточные ускорители на энергии ~ 1 Гэв) должны давать потоки до 1010 пионов в 1 сек. Пучки быстрых заряженных пионов, которые проходят до распада десятки и сотни м, обычно транспортируются к месту изучения их свойств и взаимодействий по специальным вакуумным каналам. На рис. 3 изображена схема установки для получения и исследования p--мезонов.
Пучки получаемых на ускорителях p-
-мезонов начинают применять в лучевой терапии. Продукты распада пионов (мюоны, нейтрино, фотоны, электроны и позитроны) используются для изучения слабых и электромагнитных взаимодействий.