П. к. рассчитывают на долговечность (ресурс) по динамической грузоподъёмности и на статическую грузоподъёмность. Методы расчёта в СССР стандартизированы и соответствуют рекомендациям СЭВ и ИСО (Международной организации по стандартизации). Под долговечностью П.к. понимается расчётный срок службы, выраженный числом оборотов или числом часов работы, в течение которых не менее 90% из данной группы подшипников при одинаковых условиях должны отработать без появления признаков усталости металла (выкрашивания). Связь между расчётным ресурсом в млн. оборотов (L
) или в часах (Lh
) и эквивалентной динамической нагрузкой (Р
) устанавливается эмпирическими зависимостями: млн. оборотов; ч,
где С
— динамическая грузоподъёмность подшипника, постоянная радиальная или осевая (для упорных и упорно-радиальных П. к.) нагрузка, которую группа идентичных П. к. при неподвижном наружном кольце сможет выдержать в течение расчётного срока службы в 1 млн. оборотов вращающегося внутреннего кольца; Р
— эквивалентная динамическая нагрузка, постоянная радиальная или осевая (для упорных и упорно-радиальных) нагрузка, которая при приложении её к П. к. с вращающимся внутренним и неподвижным наружным кольцом обеспечит такой же расчётный срок службы, как и при действительных условиях нагружения и вращения (значение Р
определяется по формулам, в которых комбинированная нагрузка приводится к радиальной или осевой, эквивалентной по своему разрушающему действию); a —
показатель степени, равный 3 для шарикоподшипников и 3,33 для роликоподшипников; n —
частота вращения в об/мин.
По статической нагрузке подбирают или проверяют П. к., воспринимающие внешнюю нагрузку в неподвижном состоянии или при вращении с частотой не более 1 об/мин.
Под статической грузоподъёмностью (C
0
) принято понимать такую нагрузку на П. к., от действия которой в наиболее нагруженной зоне контакта возникает общая остаточная деформация тел качения и колец, не превышающая 0,0001 диаметра тела качения. Значения динамической и статической грузоподъёмности в кгс
(н
) указывают в каталогах для каждого типоразмера подшипника. По мере повышения качества П. к. эти значения увеличиваются. Значительное повышение долговечности П. к. возможно, например, в результате совершенствования технологии, применения электрошлакового, вакуумно-дугового и двойного (электрошлакового и вакуумно-дугового) переплавов сталей. Лит.:
Подшипники качения. Справочное пособие, М., 1961; Детали машин. Атлас конструкций, под ред. Д. Н. Решетова, 3 изд., М., 1968; Спришевский А. И., Подшипники качения, М., 1969; Детали машин. Расчёт и конструирование. Справочник, под ред. Н. С. Ачеркана, 3 изд., т. 1, М., 1968; Подшипники качения. Каталог-справочник, М., 1972: ГОСТ 18854-73; ГОСТ 18855-73. В. Н. Иванов.
Рис. 3. Основные типы подшипников качения: а — шарикоподшипник радиальный однорядный; б — шарикоподшипник радиальный двухрядный сферический (самоустанавливающийся); в — роликоподшипник с короткими цилиндрическими роликами радиальный однорядный без бортов на наружном кольце; г — роликоподшипник с витыми роликами радиальный однорядный; д — роликоподшипник с игольчатыми роликами радиальный с бортами на наружном кольце; е — роликоподшипник сферический с асимметричными роликами радиальный двухрядный; ж — шарикоподшипник радиально-упорный однорядный; з — роликоподшипник с коническими роликами радиально-упорный однорядный; и — шарикоподшипник упорный одинарный.
Рис. 1. Конструкция шарикоподшипника: 1 - наружное кольцо; 2 - внутреннее кольцо; 3 - шарик; 4 - сепаратор (штампованный).
Рис. 1. Узел с подшипником качения, выполненным без внутреннего кольца (т. н. совмещенные опоры).
Рис. 4. Некоторые конструктивные разновидности подшипников: а — с канавкой на наружном кольце; б — с одной защитной шайбой; в — с двухсторонним уплотнением; г — с однобортовым внутренним кольцом и с плоским упорным кольцом; д — с коническим отверстием; е — на закрепительной втулке; ж — сдвоенные; з — с разъёмным внутренним кольцом.
Подшипник скольжения
Подши'пник скольже'ния
, опора пли направляющая механизма
или машины
,
в которой трение происходит при скольжении сопряжённых поверхностей. По направлению восприятия нагрузки различают радиальные и осевые (упорные) П. с. В зависимости от режима смазки
П. с. делятся на гидродинамические и гидростатические, газодинамические и газостатические (роль смазки выполняет воздух или нейтральный газ), с твёрдой смазкой. Существует множество конструктивных типов П. с.: самоустанавливающиеся, сегментные, самосмазывающиеся и др.