Читаем Большая Советская энциклопедия (Пр) полностью

Просто'е вещество', простое тело, однородное вещество, состоящее из атомов одного химического элемента; форма существования химического элемента в свободном состоянии. Например, П. в. алмаз, графит, уголь состоят из атомов элемента углерода, но отличаются по своему строению и свойствам. Обыкновенный кислород O2 и озон O3 состоят из атомов элемента кислорода, но обладают неодинаковой молекулярной массой и резко различаются по свойствам. Однако даже в современной литературе понятия П. в. и химический элемент нередко смешиваются, вследствие того, что в большинстве случаев химические элементы и образуемые ими П. в. носят одно и то же название. Особые названия или буквенные обозначения имеются лишь для элементов, существующих в виде различных модификаций (см. Аллотропия , Полиморфизм ), например белый, красный, чёрный фосфор , белое и серое олово (b-Sn, a-Sn).

Простое воспроизводство

Просто'е воспроизво'дство, см. в ст. Воспроизводство .

Простое товарное производство

Просто'е това'рное произво'дство, см. Товарное производство .

Простое число

Просто'е число', целое положительное число, большее, чем единица, не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13,... Понятие П. ч. является основным при изучении делимости натуральных (целых положительных) чисел; именно, основная теорема теории делимости устанавливает, что всякое целое положительное число, кроме 1, единственным образом разлагается в произведении П. ч. (порядок сомножителей при этом не принимается во внимание). П. ч. бесконечно много (это предложение было известно ещё древнегреческим математикам, его доказательство имеется в 9-й книге «Начал» Евклида). Вопросы делимости натуральных чисел, а следовательно, вопросы, связанные с П. ч., имеют важное значение при изучении групп ; в частности, строение группы с конечным числом элементов тесно связано с тем, каким образом это число элементов (порядок группы) разлагается на простые множители. В теории алгебраических чисел рассматриваются вопросы делимости целых алгебраических чисел; понятия П. ч. оказалось недостаточным для построения теории делимости — это привело к созданию понятия идеала . П. Г. Л. Дирихле в 1837 установил, что в арифметической прогрессии а + bx при х = 1, 2,... с целыми взаимно простыми а и b содержится бесконечно много П. ч.

  Выяснение распределения П. ч. в натуральном ряде чисел является весьма трудной задачей чисел теории . Она ставится как изучение асимптотического поведения функции p(х ), обозначающей число П. ч., не превосходящих положительного числа х. Первые результаты в этом направлении принадлежат П. Л. Чебышеву , который в 1850 доказал, что имеются такие две такие постоянные а и А, что < p(x ) < при любых x ³ 2 [т. е., что p(х ) растет, как функция ]. Хронологически следующим значительным результатом, уточняющим теорему Чебышева, является т. н. асимптотический закон распределения П. ч. (Ж. Адамар , 1896, Ш. Ла Валле Пуссен , 1896), заключающийся в том, что предел отношения p(х ) к  равен 1.

  В дальнейшем значительные усилия математиков направлялись на уточнение асимптотического закона распределения П. ч. Вопросы распределения П. ч. изучаются и элементарными методами, и методами математического анализа. Особенно плодотворным является метод, основанный на использовании тождества

(произведение распространяется на все П. ч. р = 2, 3,...), впервые указанного Л. Эйлером ; это тождество справедливо при всех комплексных s с вещественной частью, большей единицы. На основании этого тождества вопросы распределения П. ч. приводятся к изучению специальной функции — дзета-функции x(s ), определяемой при Res > 1 рядом

Перейти на страницу:

Все книги серии Большая Советская энциклопедия

Похожие книги

100 великих кладов
100 великих кладов

С глубокой древности тысячи людей мечтали найти настоящий клад, потрясающий воображение своей ценностью или общественной значимостью. В последние два столетия всё больше кладов попадает в руки профессиональных археологов, но среди нашедших клады есть и авантюристы, и просто случайные люди. Для одних находка крупного клада является выдающимся научным открытием, для других — обретением национальной или религиозной реликвии, а кому-то важна лишь рыночная стоимость обнаруженных сокровищ. Кто знает, сколько ещё нераскрытых загадок хранят недра земли, глубины морей и океанов? В историях о кладах подчас невозможно отличить правду от выдумки, а за отдельными ещё не найденными сокровищами тянется длинный кровавый след…Эта книга рассказывает о ста великих кладах всех времён и народов — реальных, легендарных и фантастических — от сокровищ Ура и Трои, золота скифов и фракийцев до призрачных богатств ордена тамплиеров, пиратов Карибского моря и запорожских казаков.

Андрей Юрьевич Низовский , Николай Николаевич Непомнящий

История / Энциклопедии / Образование и наука / Словари и Энциклопедии