Се'тка
(лат. Reticulum), созвездие Южного полушария неба, наиболее яркая звезда 3,3 визуальной звёздной величины. На территории СССР не видно. См. Звёздное небо.Сетледж
Се'тледж,
река в бассейне Инда; см. Сатледж.Сетные орудия лова
Се'тные ору'дия ло'ва,
рыболовные орудия, основной строительный материал которых сетное полотно. С. о. л. — основа промышленного рыболовства. По способу захвата рыбы С. о. л. подразделяют на 3 основных группы: объячеивающие, ловушки-лабиринты и отцеживающие. Объячеивающие С. о. л. (жаберные сети) применяют для облова разреженных скоплений на большой акватории, их можно использовать в любом месте водоёма независимо от состояния дна, они могут работать на течении. Отдельные сети (длиной 10—50 м
) соединяются последовательно в т. н. порядки, длина которых может достигать нескольких км. На концах порядка укрепляются якоря и буи. Сети устанавливают на глубинах до 200 м при собственной их высоте от 0,5 м (для краба) до 10—15 м (для сельди). На мелководье ставные сети устанавливают неподвижно на кольях. Речные плавные сети сплывают по течению вслед за лодками, к которым они прикреплены. Морские плавные сети (дрифтерные) крепятся к общему канату-вожаку и дрейфуют вместе с судном (см. Дрифтерный лов). Для повышения уловистости иногда используют двухстенные и трёхстенные жаберные сети. Ловушки-лабиринты применяют для облова мигрирующей у морских берегов и в устьях рек рыбы, движущейся в определённое время по определённым путям в силу естественных процессов её жизненного цикла (например, при нересте). Типичная ловушка — ставной невод
, состоящий из одной или двух камер для накопления и удержания улова; входного устройства, позволяющего рыбе без помех зайти в ловушку и затрудняющего выход из неё; направляющего крыла, вынуждающего рыбу двигаться к ловушке. Крыло имеет форму длинной прямоугольной сети, которая полностью или частично перекрывает толщу воды от дна до поверхности. На мелководьях ставные невода обычно укрепляют на сваях, а на больших глубинах — на мягком канатном каркасе, который растягивается с помощью системы буев и якорей. Выливка рыбы ведётся вручную или с помощью рыбонасоса. Другую группу ловушек образуют вентери, размеры которых значительно меньше, чем ставных неводов. К отцеживающим С. о. л. относятся закидные, обкидные и донные неводы, тралы
, подхваты и др. Закидной невод перекрывает водоём по всей глубине; обкидной охватывает толщу воды вблизи поверхности, причём для удержания рыбы невод закрывается снизу. Особенность донных неводов состоит в том, что они облавливают лишь ту часть толщи воды, которая примыкает ко дну, где обитают донные и придонные рыбы. Особую роль при лове донным неводом играют тяговые канаты-урезы, сгоняющие рыбу во время тяги невода на путь, по которому движется сеть. Подхваты применяют обычно в сочетании с искусственными источниками света: конусные подхваты для лова кильки, а бортовые подхваты прямоугольной формы для лова сардины, сайры и других рыб (см. Светолов).
Несмотря на распространение С. о. л. для облова массовых скоплений рыбы, эти рыболовные орудия имеют значительные недостатки: большие размеры, трудоёмкость обслуживания, необходимость в мощных судах. Лит
. см. при ст. Рыболовные орудия. А. Л. Фридман.
Сеток метод
Се'ток ме'тод,
собирательное название группы приближённых методов решения дифференциальных, интегральных и интегро-дифференциальных уравнений. Применительно к дифференциальным уравнениям с частными производными термин «С. м.» используется в качестве синонима терминов «метод конечных разностей» и «разностный метод». С, м. — один из наиболее распространённых приближённых методов решения задач, связанных с дифференциальными уравнениями. Широкое применение С. м. объясняется его большой универсальностью и сравнительной простотой реализации на ЭВМ. Суть С. м. состоит в следующем: область непрерывного изменения аргументов, в которой ищется решение уравнения, дополненного, если необходимо, краевыми и начальными условиями, заменяется дискретным множеством точек (узлов), называемым сеткой; вместо функций непрерывного аргумента рассматриваются функции дискретного аргумента, определяемые в узлах сетки и называемые сеточными функциями; производные, входящие в уравнение, краевые и начальные условия, аппроксимируются разностными отношениями; интегралы аппроксимируются квадратурными формулами; при этом исходное уравнение (задача) заменяется системой (линейных, если исходная задача была линейной) алгебраических уравнений (системой сеточных уравнений, а применительно к дифференциальным уравнениям — разностной схемой).