Читаем Большая Советская Энциклопедия (СИ) полностью

Симметри'я в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу.

  Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.

  Непрерывные преобразования

  1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование — реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование — параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).

  2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).

  3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.

  4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (см. Относительности теория).

  5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом, барионным зарядом, лептонным зарядом, гиперзарядом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции всех частиц могут быть одновременно умножены на произвольный фазовый множитель:

, , (1)

  где yj — волновая функция частицы j, — комплексно сопряжённая ей функция, zj — соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда е), b — произвольный числовой множитель.

  Наряду с этим электромагнитные взаимодействия симметричны относительно калибровочных (градиентных) преобразований 2-го рода для потенциалов электромагнитного поля (А, j):

А ® А + grad f, , (2)

  где f (x, у, z, t) — произвольная функция координат (х, у, z) и времени (t), с — скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной b, являющейся произвольной функцией координат и времени: , где  — Планка постоянная. Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой — он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.

  Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины b являются произвольными функциями координат и времени (и даже операторами, преобразующими состояния внутренней С.). Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга — Милса теория).

  6) Изотопическая инвариантность сильных взаимодействий. Сильные взаимодействия симметричны относительно поворотов в особом «изотоническом пространстве». Одним из проявлений этой С. является зарядовая независимость ядерных сил, заключающаяся в равенстве сильных взаимодействий нейтронов с нейтронами, протонов с протонами и нейтронов с протонами (если они находятся соответственно в одинаковых состояниях). Изотопическая инвариантность является приближённой С., нарушаемой электромагнитными взаимодействиями. Она представляет собой часть более широкой приближённой С. сильных взаимодействий — SU (3)-C. (см. Сильные взаимодействия).

  Дискретные преобразования

Перейти на страницу:

Похожие книги

100 великих оригиналов и чудаков
100 великих оригиналов и чудаков

Кто такие чудаки и оригиналы? Странные, самобытные, не похожие на других люди. Говорят, они украшают нашу жизнь, открывают новые горизонты. Как, например, библиотекарь Румянцевского музея Николай Фёдоров с его принципом «Жить нужно не для себя (эгоизм), не для других (альтруизм), а со всеми и для всех» и несбыточным идеалом воскрешения всех былых поколений… А знаменитый доктор Фёдор Гааз, лечивший тысячи москвичей бесплатно, делился с ними своими деньгами. Поистине чудны, а не чудны их дела и поступки!»В очередной книге серии «100 великих» главное внимание уделено неординарным личностям, часто нелепым и смешным, но не глупым и не пошлым. Она будет интересна каждому, кто ценит необычных людей и нестандартное мышление.

Рудольф Константинович Баландин

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии