Способы построения математических моделей
С. с. и методы их исследования — предмет возникшей в 60-х гг. 20 в. новой научной дисциплины — теории сложных систем. Для математического описания элементов С. с. пользуются методами функций теории
,
современной алгебры
и функционального анализа
.
Исследование математических моделей С. с. обычно начинают с оценки функциональных характеристик, являющихся показателями эффективности, надёжности, помехозащищенности, качества управления и других важных свойств С. с. С формальной точки зрения упомянутые показатели представляются функционалами
,
заданными на множестве траекторий движения С. с. Рассмотрение зависимости функционалов от параметров С. с. открывает возможности для использования при анализе С. с. методов поля теории
.
Изучение отношений между элементами и подсистемами, определение роли и места каждой подсистемы в общем процессе функционирования системы составляют предмет структурного анализа С. с. Так как схема сопряжения любой С. с. представляется как совокупность предикатов (см. Логика предикатов
),
определённых на множестве входов и выходов её элементов, то для изучения структуры С. с. используют аппарат математической логики
и графов теории
.
Методы структурного анализа позволяют выделить в С. с. наборы подсистем, находящихся в заданных отношениях, и представить С. с. как совокупность объектов с хорошо изученными типичными структурами. Кроме того, эти методы применяют для оценки т. н. структурных характеристик, которые в количественном виде отражают те или иные частные свойства схемы сопряжения элементов С. с. Количественную оценку функциональных и структурных характеристик дополняют качественным исследованием, проводимым при помощи методов т. н. качественной теории С. с. Сюда в первую очередь входят исследование устойчивости
систем, в том числе построение областей устойчивости характеристик в пространстве параметров С. с., выделение типичных режимов функционирования С. с., оценка достижимости, управляемости и наблюдаемости С. с., анализ асимптотического поведения и т. д. В 70-х гг. для исследования С. с. стали широко применять алгебраические методы теории полугрупп, модулей, структур, обычно используемые при решении задач динамики детерминистических систем, декомпозиции автоматов, теории реализации линейных систем и др. В связи с необходимостью моделировать на ЭВМ процессы функционирования объектов большой сложности возникают серьёзные проблемы, связанные с ростом трудоёмкости вычислений. Для снижения объёма работ при подготовке моделей целесообразно использовать универсальные автоматизированные моделирующие алгоритмы, способные настраиваться на любые конкретные объекты из заданного класса. Наличие имитационной модели позволяет применять специальные методы идентификации С. с. и обработки экспериментальных данных, полученных в результате натурных испытаний систем. Испытываемый объект рассматривается как С. с. с неизвестными параметрами элементов и параметрами сопряжения. Неизвестные параметры оценивают посредством сравнения значений функциональных и структурных характеристик С. с., устанавливаемых экспериментально и в результате моделирования. Это даёт возможность определять поправки к первоначальным значениям параметров С. с. и добиваться достаточной точности оценки неизвестных параметров методом последовательных приближений.
Успешно развиваются также и аналитические методы исследования С. с., основанные на теории случайных процессов
.
Лит.:
Бусленко Н. П., К теории сложных систем, «Изв. АН СССР. Техническая кибернетика», 1963, № 5; Коваленко И. Н., О некоторых классах сложных систем, «Изв. АН СССР. Техническая кибернетика», 1964, № 6, 1965, № 1, № 3; Калман Р., Фалб П., Арбиб М., Очерки по математической теории систем, пер. с англ., М., 1971; Бусленко Н. П., Калашников В. В., Коваленко И. Н., Лекции по теории сложных систем, М., 1973; Директор С., Рорер Р., Введение в теорию систем, пер. с англ., М., 1974. Н. П. Бусленко.
Сложная функция
Сло'жная фу'нкция
, функция от функции. Если величина y является функцией от u,
то есть у = f
(u
),
а и,
в свою очередь, функцией от х,
то есть u =
j(х
),
то у
является С. ф. от х,
то есть y = f
[(x
)],
определённой для тех значений х,
для которых значения j(х
) входят в множество определения функции f
(u
).
В таком случае говорят, что у
является С. ф. независимого аргумента х,
а u —
промежуточным аргументом. Например, если у = u2
, u =
sinx,
то у
= sin2х
для всех значений х.
Если же, например, у
= , u =
sinx
, то у = ,
причём, если ограничиваться действительными значениями функции, С. ф. у
как функция х
определена только для таких значений х,
для которых sin ³ 0, то есть для ,
где k =
0, ± 1, ± 2,...