с частотами n
w, кратными основной частоте (где Сn — амплитуды гармонических функций, t — время, n — номер гармоники). Чем сильнее разлагаемое колебание отличается от гармонического, тем богаче его С., тем больше составляющих обертонов содержится в разложении и тем больше амплитуды этих обертонов. В общем случае С. периодические колебания содержит бесконечный ряд гармонических обертонов, амплитуды которых убывают с увеличением номера обертона и притом довольно быстро, так что практически приходится принимать во внимание наличие только некоторого конечного числа обертонов. Процессы, не имеющие строгой периодичности или непериодические, могут представляться в виде суммы гармонических компонент с некратными частотами или в виде суммы (интеграла) бесконечного числа составляющих со сколь угодно близкими частотами (непрерывный С.). В зависимости от природы колебательного процесса различают спектры оптические, электрические, механические, например спектр звука.Спектр оператора
Спектр опера'тора
(математический), совокупность чисел l, для которых оператор Т — lЕ (где Т — данный линейный оператор, а Е — единичный оператор) не имеет всюду определённого ограниченного обратного оператора. Понятие С. о. есть обобщение понятия совокупности собственных значений матрицы. Особо важно понятие С. о. для самосопряжённых и унитарных операторов. См. также Операторов теория, Спектральный анализ линейных операторов. Спектр телевизионного сигнала
Спектр телевизио'нного сигна'ла,
совокупность гармонии, составляющих телевизионного сигнала. Ширина спектра и его структура определяются параметрами разложения передаваемого изображения и содержанием последнего. За нижнюю границу С. т. с. при прогрессивной развёртке принимают частоту смены кадров,
при чересстрочной — частоту смены полей. (Постоянная составляющая, характеризующая среднюю яркость изображения, обычно в телевизионном сигнале непосредственно не присутствует.) Верхнюю границу С. т. с. fмакс устанавливают, исходя из условий передачи основной гармонической составляющей для чередующихся вдоль строки черно-белых элементов изображения; fмакс=1/2KnpZ2, где К — постоянный коэффициент (обычно К = 0,6 — 0,9), n — частота кадров, р — формат кадра (отношение его ширины к высоте), Z — число строк (например, при телевизионном стандарте, принятом в СССР, n = 25 сек-1, Z= 625, р = 4/3 и при К = 0,9 fмакс » 6 Мгц).
С. т. с. при неподвижном черно-белом изображении, как и спектр сигнала яркости при неподвижном цветном изображении, имеет дискретный характер и состоит из отдельных групп спектральных линий, образованных гармониками строчной частоты fcтp и боковыми линиями. В каждой группе наиболее интенсивна гармоника fстр. При движении объектов и смене содержания передаваемых изображений около дискретных спектральных линий появляются боковые полосы сплошного спектра; ширина полос обычно не превышает несколько гц.
В совместимых системах цветного телевидения в высокочастотной части спектра сигнала яркости расположен спектр сигнала цветовой поднесущей. Частота и способ модуляции сигнала цветовой поднесущей выбираются так, чтобы соответствующие боковые спектральные линии располагались на свободных участках спектра сигнала яркости. В системе СЕКАМ, например, частоты цветовых поднесущих составляют 272 и 282 fcтp, и применяется частотная модуляция. Ширина спектра сигнала цветовой поднесущей в спектре сигнала яркости не превышает 3 Мгц.
Лит.
см. при ст. Телевидение. Н. Г. Дерюгин.
Спектральная аппаратура рентгеновская
Спектра'льная аппарату'ра рентге'новская,
аппаратура, в которой рентгеновские лучи возбуждаются в исследуемом веществе, разлагаются в спектр и регистрируются. Прецизионная С. а. р. служит для исследования тонкой структуры рентгеновских спектров, аналитическая — для определения элементного состава вещества (см. Спектральный анализ рентгеновский). Прецизионная аппаратура должна обладать высокой разрешающей способностью, аналитическая — высокой светосилой. В зависимости от цели и условий исследования и характера объекта применяют различные типы С. а. р.