Спектра'льное разложе'ние
линейного оператора, представление линейного оператора А в виде линейной комбинации операторов проектирования на взаимно перпендикулярные оси или (более общо) в виде специального интеграла, содержащего под знаком интегрирования семейство операторов проектирования, удовлетворяющее определённым условиям (так называемое разложение единицы, отвечающее оператору А). Изучение С. р. и их возможных обобщений для различных типов линейных операторов составляет основное содержание спектрального анализа линейных операторов. Спектральное разложение (случайной функции)
Спектра'льное разложе'ние
случайной функции, разложение случайной функции (в частности, случайного процесса) в ряд или интеграл по той или иной специальной системе функций такое, что коэффициенты этого разложения представляют собой взаимно некоррелированные случайные величины. Наиболее известный класс С. р. случайных функций — представления стационарных случайных процессов Х (t) в виде интеграла Фурье — Стилтьеса ,
где Z(l)
— случайная функция с некоррелированными приращениями. Существование такого С. р. показывает, что стационарный случайный процесс всегда можно рассматривать как наложение некоррелированных друг с другом гармонических колебаний различных частот со случайными фазами и амплитудами. С. р. аналогичного вида, но с заменой гармонических колебаний n-мерными плоскими волнами, имеет место и для однородных случайных полей в n-мерном пространстве. Другой тип С. р. случайных функций — это разложение случайного процесса X(t), заданного на конечном отрезке оси (или, более общо, случайной функции X(t), заданной на ограниченной области n-мерного пространства), в ряд вида ,
где jk
(t) и lk — собственные функциии собственные значения интегрального оператора в функциональном пространстве с ядром, равным корреляционной функции случайного процесса (или функции) X(t), a Zk, k = 1, 2,..., — последовательность попарно некоррелированных случайных величин единичной дисперсии. С. р. специального вида имеют место также для однородных и изотропных случайных полей в евклидовых пространствах и для однородных полей на пространствах с группой преобразований, отличных от евклидова пространства. Лит.:
Яглом А. М., Спектральные представления для различных классов случайных функций, в кн.; Труды 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 250—73: Гихман И. И., Скороход А. В., Теория случайных процессов, т.1, М., 1971. А. М. Яглом.
Спектральные линии
Спектра'льные ли'нии,
узкие участки в спектрах оптических, каждый из которых можно охарактеризовать определённой длиной волны l (или частотой , где с — скорость света). С. л. наблюдаются в спектрах испускания как светлые (цветные) линии на тёмном фоне, в спектрах поглощения — как тёмные линии на светлом фоне (см. рис
). Каждая С. л. соответствует определённому квантовому переходу в атоме (молекуле, кристалле). С. л. не являются строго монохроматичными: каждая С. л. имеет некоторую ширину Dl (см. Ширина спектральных линий).Спектральные приборы
Спектра'льные прибо'ры,
приборы для исследования спектрального состава по длинам волн электромагнитных излучений в оптическом диапазоне (10-3—103мкм; см. Спектры оптические), нахождения спектральных характеристик излучателей и объектов, взаимодействовавших с излучением, а также для спектрального анализа. С. п. различаются методами спектрометрии, приёмниками излучения, исследуемым (рабочим) диапазоном длин волн и др. характеристиками. Принцип действия большинства С. п. можно пояснить с помощью имитатора, изображенного на рис. 1.
Форма отверстия в равномерно освещенном экране 1 соответствует функции f(l), описывающей исследуемый спектр — распределение энергии излучения по длинам волн l. Отверстие в экране 2 соответствует функции а(l—l'), описывающей способность С. п. выделять из светового потока узкие участки dl в окрестности каждой l’. Эту важнейшую характеристику С. п. называют функцией пропускания, или аппаратной функцией (АФ). Процесс измерения спектра f(l) прибором с АФ а(l—l’) можно имитировать, регистрируя изменения светового потока, проходящего через отверстие, при перемещении (сканировании) экрана 2 относительно экрана 1. Очевидно, чем меньше ширина АФ, тем точнее будет измерена форма контура спектра f(l), тем более тонкая структура может быть в нём обнаружена.