Читаем Большая Советская Энциклопедия (СП) полностью

  В фурье-спектрометрах осуществляется непрерывное кодирование длин волн с помощью интерференционной модуляции, возникающей в двухлучевом интерферометре при изменении (сканировании) оптической разности хода. Приёмник излучения на выходе интерферометра даёт во времени сигнал — интерферограмму, которая для получения искомого спектра подвергается Фурье-преобразованию на ЭВМ. Фурье-спектрометры наиболее эффективны для исследований протяжённых спектров слабых излучений в ИК-области, а также для решения задач сверхвысокого разрешения. Конструкции и характеристики приборов этого типа очень разнообразны: от больших уникальных лабораторных установок с оптической разностью хода 2 м (R » 106) до компактных ракетных и спутниковых спектрометров, предназначенных для метеорологических и геофизических исследований, изучения спектров планет и т. д. Для фурье-спектрометров соотношение (1) имеет вид: .

  Отметим ещё раз принципиальное различие рассмотренных групп приборов: в одноканальных приборах 1 и 3 групп время эксперимента затрачивается на накопление информации о новых участках спектра; в приборах 2 группы — на накопление отношения сигнала к шуму, а в приборах 4 группы — на накопление структурных деталей в данном спектральном диапазоне (рис. 9).

  Лит.: Пейсахсон И. В., Оптика спектральных приборов, Л., 1970; Тарасов К. И., Спектральные приборы, Л., 1968; Заидель А. Н., Островская Г. В., Островский Ю. И., Техника и практика спектроскопии, М., 1972; Оптико-механические приборы, М., 1965; Якушенков Ю. Г. , Основы теории и расчета оптико-электронных приборов, М., 1971; Мерц Л., Интегральные преобразования в оптике, пер. с англ., М., 1969; Инфракрасная спектроскопия высокого разрешения. Сб., М., 1972; Кардона М., Модуляционная спектроскопия, пер. с англ., М., 1972.

  В. А. Никитин.

Рис. 7. Вакуумный 24-канальный квантометр (заводское название — фотоэлектрическая установка) ДФС-41 для экспрессного и маркировочного анализа чугунов, простых и среднелегированных сталей на легирующие элементы, металлоиды и вредные примеси, аналитические линии которых расположены в вакуумной УФ-области: 1 — вакуумный полихроматор с вогнутой дифракционной решёткой с фокусным расстоянием, равным 1 м, рабочий диапазон 0,175—0,38 мкм; 2 — генератор искры ИВС-1 для возбуждения эмиссионных линий атомов в пробе; 3 — электронно-регистрирующее устройство ЭРУ-1; 4 — блок цифрового отсчёта. Время анализа 10 элементов около 2 мин.

Рис. 3. Принципиальная оптическая схема спектрального прибора с пространственным разделением длин волн с помощью угловой дисперсии: 1 — коллиматор с входной щелью Щ и объективом O1, фокусное расстояние которого C1; 2 — диспергирующий элемент, обладающий угловой дисперсией Dj/Dl; 3 — фокусирующая система (камера) с объективом O2, создающим в фокальной плоскости Ф изображения входной щели в излучении разных длин волн с линейной дисперсией Dx/Dl. Если в плоскости Ф установлена одна выходная щель, то прибор называется монохроматором, если несколько — полихроматором, если фоточувствительный слой (или глаз) — спектрографом (или спектроскопом).

Рис. 4. Блок-схема однолучевого одноканального спектрального прибора: И — источник излучения; М — оптический модулятор (обтюратор); О — исследуемый образец; Ф — сканирующий фильтр (монохроматор); П — фотоэлектрический приёмник излучения; У — усилитель и преобразователь сигналов приёмника; Р — аналоговый или цифровой регистратор.

Рис. 5. Схема «оптического нуля» двухлучевого одноканального спектрофотометра: К — оптический клин; остальные обозначения аналогичны приведённым на рис. 4.

Рис. 9. ИК-спектры поглощения паров воды на участке 200—250 см, полученные с помощью фурье-спектрометра при различных оптических разностях хода D в интерферометре. Чем больше D (т. е. чем больше затрачено времени на сканирование по D), тем больше деталей можно выявить в исследуемом участке спектра. При D= 4 см спектральное разрешение dl=2/D=0,5 см-1.

Рис. 8. Гиперболический растр Жерара. Тёмные полосы — зеркальные и растр попеременно работает то в проходящем, то в отражённом свете.

Рис. 6. Инфракрасный двухлучевой спектрофотометр ИКС-29 среднего класса, автоматически регистрирующий спектры пропускания T(n) (или отражения при введении в прибор специальных приставок). Рабочий диапазон 4000—400 см-1 (2,5 — 25 мкм), погрешности измерений DТ = ± 1%, Dn » ± 1 см-1 при R » 1000 (в середине рабочего диапазона). Источник излучения — силитовый стержень (глобар), нагреваемый до 1400°С, располагается в отсеке 1; 2 — кюветное отделение двухлучевого фотометра с двумя держателями образцов; 3 — отсек монохроматора, работающего на двух сменных репликах, и приёмника — болометра БМК-З. Сверху (4) размещен самописец и система управления прибором.

Перейти на страницу:

Похожие книги

100 знаменитых символов советской эпохи
100 знаменитых символов советской эпохи

Советская эпоха — яркий и очень противоречивый период в жизни огромной страны. У каждого из нас наверняка своё ощущение той эпохи. Для кого-то это годы спокойствия и глубокой уверенности в завтрашнем дне, это время, когда большую страну уважали во всём мире. Для других, быть может, это период страха, «железного занавеса», время, бесцельно потраченное на стояние в бесконечных очередях.И всё-таки было то, что объединяло всех. Разве кто-нибудь мог остаться равнодушным, когда из каждой радиоточки звучали сигналы первого спутника или когда Юрий Левитан сообщал о полёте Юрия Гагарина? Разве не наворачивались на глаза слёзы, когда олимпийский Мишка улетал в московское небо? И разве не переполнялась душа гордостью за страну, когда наши хоккеисты побеждали родоначальников хоккея канадцев на их же площадках или когда фигуристы под звуки советского гимна стояли на верхней ступени пьедестала почёта?Эта книга рассказывает о тех знаменательных событиях, выдающихся личностях и любопытных деталях, которые стали символами целой эпохи, ушедшей в прошлое…

Андрей Юрьевич Хорошевский

История / Энциклопедии / Образование и наука / Словари и Энциклопедии