Читаем Большая Советская Энциклопедия (СП) полностью

  С. к. позволяет получить информацию о системе энергетических уровней кристалла, о механизмах взаимодействия света с веществом, о переносе и преобразовании энергии, поглощённой в кристалле, и её изменениях (фазовые переходы), о фотохимических реакциях и фотопроводимости. С. к. позволяет также получить данные о структуре кристаллической решётки, о строении и ориентации различных дефектов и примесных центров в кристаллах и т. д. На данных С. к. основаны применения кристаллов в квантовой электронике, в качестве люминофоров, сцинтилляторов, преобразователей световой энергии, оптических материалов, ячеек для записи информации. Методы С. к. используются в спектральном анализе.

  Лит.: Феофилов П. П., Поляризованная люминесценция атомов, молекул и кристаллов, М., 1959; Филипс Дж., Оптические спектры твёрдых тел в области собственного поглощения, пер. с англ., [М.], 1968; Ребане К. К., Элементарная теория колебательной структуры спектров примесных центров кристалла, М., 1968; Каплянский А. А., Броуде В. Л., Спектроскопия кристаллов, в кн.: Физический энциклопедический словарь, т. 5, М., 1966; Кардона М., Модуляционная спектроскопия, пер. с англ., М., 1972; Бальхаузен К., Введение в теорию поля лигандов, пер. с англ., М., 1964; Пуле А., Матье Ж. - П., Колебательные спектры и симметрия кристаллов, пер. с франц., М., 1973.

  Н. Н. Кристофель.

Спектроскопия лазерная

Спектроскопи'я ла'зерная, раздел оптической спектроскопии, методы которой основаны на использовании лазерного излучения. Применение монохроматического излучения лазеров позволяет стимулировать квантовые переходы, между вполне определёнными уровнями энергии атомов и молекул (в спектроскопии, использующей нелазерные источники света, изучают спектры, возникающие в результате переходов между громадным числом квантовых состояний атомов и молекул).

  Первые серьёзные лазерные эксперименты в спектроскопии были осуществлены после создания достаточно мощных лазеров видимого диапазона, излучение которых имеет фиксированную частоту. Они были использованы для возбуждения спектров комбинационного рассеяния света. Принципиально новые возможности С. л. открылись с появлением лазеров с перестраиваемой частотой. С. л. позволила решить или приступить к решению важных задач, перед которыми спектроскопия обычных источников света практически бессильна.

  Высокая монохроматичность излучения лазеров с перестраиваемой частотой даёт возможность измерять истинную форму спектральных линий вещества, не искажённую аппаратной функцией спектрального прибора. Это особенно существенно для спектроскопии газов в инфракрасной области, где разрешение лучших промышленных приборов обычного типа составляет 0,1 см-1, что в 100 раз превышает ширину узких спектральных линий (см. Ширина спектральных линий).

  Временная и пространственная когерентность лазерного излучения, лежащая в основе методов нелинейной С. л., позволяет изучать структуру спектральных линий, скрытую обычно доплеровским уширением, вызываемым тепловым движением частиц в газе.

  Благодаря высокой монохроматичности и когерентности излучение лазера переводит значительное число частиц из основного состояния в возбуждённое. Это повышает чувствительность регистрации атомов и молекул — в 1 см3вещества удаётся регистрировать включения, состоящие из 102 атомов или 1010 молекул. Разрабатываются методы регистрации отдельных атомов и молекул.

  Короткие и ультракороткие лазерные импульсы дают возможность исследовать быстропротекающие (~10-6—10-12сек) процессы возбуждения, девозбуждения и передачи возбуждения в веществе. С помощью импульсов направленного лазерного излучения можно исследовать спектры рассеяния и флуоресценции атомов и молекул в атмосфере на значительном расстоянии (~ 100 км) и получать информацию о её составе, а также осуществлять контроль загрязнения окружающей среды.

  Фокусируя лазерное излучение, можно исследовать состав малых количеств вещества (имеющих размеры порядка длины волны). Это успешно применяется в локальном эмиссионном спектральном анализе.

  Приборы, применяемые в С. л., принципиально отличаются от обычных спектральных приборов. В приборах, использующих лазеры с перестраиваемой частотой, отпадает необходимость в разложении излучения в спектр с помощью диспергирующих элементов (призм, дифракционных решёток), являющихся основной частью обычных спектральных приборов. Иногда в С. л. применяют приборы, в которых излучение разлагается в спектр с помощью нелинейных кристаллов (см. рис. 4 в ст. Нелинейная оптика).

Перейти на страницу:

Похожие книги

100 знаменитых символов советской эпохи
100 знаменитых символов советской эпохи

Советская эпоха — яркий и очень противоречивый период в жизни огромной страны. У каждого из нас наверняка своё ощущение той эпохи. Для кого-то это годы спокойствия и глубокой уверенности в завтрашнем дне, это время, когда большую страну уважали во всём мире. Для других, быть может, это период страха, «железного занавеса», время, бесцельно потраченное на стояние в бесконечных очередях.И всё-таки было то, что объединяло всех. Разве кто-нибудь мог остаться равнодушным, когда из каждой радиоточки звучали сигналы первого спутника или когда Юрий Левитан сообщал о полёте Юрия Гагарина? Разве не наворачивались на глаза слёзы, когда олимпийский Мишка улетал в московское небо? И разве не переполнялась душа гордостью за страну, когда наши хоккеисты побеждали родоначальников хоккея канадцев на их же площадках или когда фигуристы под звуки советского гимна стояли на верхней ступени пьедестала почёта?Эта книга рассказывает о тех знаменательных событиях, выдающихся личностях и любопытных деталях, которые стали символами целой эпохи, ушедшей в прошлое…

Андрей Юрьевич Хорошевский

История / Энциклопедии / Образование и наука / Словари и Энциклопедии