Читаем Большая Советская Энциклопедия (СУ) полностью

Субгармони'ческие колеба'ния в радиотехнике, субгармоники, гармонические колебания с частотами, равными обычно кратным долям значения основной частоты. С. к. получают посредством делителей частоты (генераторов С. к.). У делителей частоты некоторых типов наибольшая кратность деления частоты, приходящаяся на одну ступень деления, может достигать несколько тысяч.

  Лит.: Ризкин И. X., Умножители и делители частоты, М., 1966; Хьюз В., Нелинейные электрические цепи, пер. с англ., М., 1967; Лапицкий Е. Г., Семенов А. М., Сосновкин Л. Н., Расчет диапазонных радиопередатчиков, [Л.], 1974.

Субгармонические функции

Субгармони'ческие фу'нкции, функции, удовлетворяющие в некоторой области неравенству

.

В случае, когда Df = 0, функция f является гармонической функцией . Понятие С. ф. можно рассматривать как обобщение понятия гармонической функции. При n = 1 условие Df ³ 0 принимает вид , то есть С. ф. одного переменного есть выпуклая функция. Поэтому понятие С. ф. можно рассматривать также как распространение понятия выпуклой функции на случай любого числа переменных. Так, например, подобно тому как всякая дуга графика выпуклой функции лежит ниже хорды, соединяющей её концы, всякая ограниченная некоторым контуром часть поверхности z = f (x, y ), где f (x, у ) С. ф. двух переменных, лежит ниже проходящей через тот же контур поверхности z = F (x, у ), где F (x , у ) гармоническая функция (отсюда название «субгармоническая», то есть «подгармоническая»).

  Приведённое выше определение предполагает, что функция f имеет частные производные второго порядка. От этого ограничения освобождаются, непосредственно выражая отмеченное только что свойство графика С. ф. располагаться ниже графика гармонической функции.

  Супергармонические функции (от лат. super — над) — функции, удовлетворяющие неравенству Df £ 0. Если f — супергармоническая функция, то f есть С. ф., и наоборот. Классические примеры С. ф. и супергармонических функций: для n = 2 логарифмический потенциал

и для n = 3 объёмный потенциал

(здесь r — плотность масс или зарядов). Функции эти внутри областей G и Т удовлетворяют соответственно уравнениям Пуассона DV = — 2pr и DU = — 4pr и, следовательно, являются супергармоническими при r ³ 0 и С. ф. при r < 0.

  С. ф. применяются, например, при решении задач математической физики (в частности, в теории потенциала), теории случайных процессов.

  Лит.: Привалов И. И., Субгармонические функции, М.—Л., 1937.

Субгиганты

Субгига'нты, группа холодных звёзд, расположенных на Герцшпрунга — Ресселла диаграмме между главной последовательностью и ветвью гигантов. По сравнению со звёздами главной последовательности той же светимости у С. размеры больше, а температура поверхности ниже. С. встречаются в основном в затменных двойных системах типа Алголя; по-видимому, являются поздней стадией развития двойных звёзд .

Субдоминанта

Субдомина'нта (от суб... и доминанта ) в музыке, одна из трёх гармонических функций (см. Функции ладовые ); также аккорд, расположенный квинтой ниже тоники (обозначение — S ). Основа субдоминантовых аккордов — IV ступень лада, которая и сама называется С. Субдоминантовую функцию выполняют также аккорды, строящиеся на II и VI ступенях. Из-за присутствия в составе С. основного звука тоники тяготение С. в тонику менее остро, чем доминанты. Последование С. и доминанты делает ладовое тяготение максимально определённым. Тональность, тоникой которой является С. основной, называется субдоминантовой.

Суберин

Субери'н (от лат. suber — кора пробкового дерева), вещество, выделяемое клетками покровных тканей растений; пропитывает клеточные оболочки, в результате чего происходит их опробковение . По химической природе С. — глицерид феллоновой [СН3 (СН2 )19 СН (ОН) СООН] и пробковой [СООН (СН2 )6 СООН] кислот. Близок кутину , но встречается гораздо реже.

Субито

Су'бито (итал. subito, буквально — внезапно, неожиданно) в музыке, термин, обозначающий резкий переход от одной степени громкости к другой; как указание для исполнителя используется с поясняющими словами: forte subito — внезапно громко, piano subito — внезапно тихо.

Субкарлики

Перейти на страницу:

Похожие книги

100 великих казаков
100 великих казаков

Книга военного историка и писателя А. В. Шишова повествует о жизни и деяниях ста великих казаков, наиболее выдающихся представителей казачества за всю историю нашего Отечества — от легендарного Ильи Муромца до писателя Михаила Шолохова. Казачество — уникальное военно-служилое сословие, внёсшее огромный вклад в становление Московской Руси и Российской империи. Это сообщество вольных людей, создававшееся столетиями, выдвинуло из своей среды прославленных землепроходцев и военачальников, бунтарей и иерархов православной церкви, исследователей и писателей. Впечатляет даже перечень казачьих войск и формирований: донское и запорожское, яицкое (уральское) и терское, украинское реестровое и кавказское линейное, волжское и астраханское, черноморское и бугское, оренбургское и кубанское, сибирское и якутское, забайкальское и амурское, семиреченское и уссурийское…

Алексей Васильевич Шишов

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука