Схемы магистральных Т. с. могут быть радиальными (тупиковыми) или кольцевыми. Во избежание перерывов в снабжении теплом предусматривается соединение отд. магистральных сетей между собой, а также устройство перемычек между ответвлениями. При большой длине магистральных Т. с. на них устанавливают подкачивающие насосные подстанции. На трассе Т. с. и в местах ответвлений оборудуют подземные камеры, в которых размещают запорно-регулировочную арматуру, сальниковые компенсаторы и пр.
Лит.:
Лямин А. А., Скворцов А. А., Проектирование и расчет конструкций тепловых сетей, 2 изд., М., 1965; Громов Н. К., Абонентские установки водяных тепловых сетей, М., 1968; Витальев В. П., Бесканальные прокладки тепловых сетей, М., 1971; Соколов Е. Я., Теплофикация и тепловые сети, 4 изд., М., 1975. Н. М. Зингер.
«Тепловая смерть» Вселенной
«Теплова'я смерть» Вселе'нной,
ошибочный вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы. Этот вывод был сформулирован Р. Клаузиусом
(1865) на основе второго начала термодинамики
.
Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию — к так называемому состоянию с максимумом энтропии
.
Такое состояние соответствовало бы «Т. с.» В. Ещё до создания современной космологии
были сделаны многочисленные попытки опровергнуть вывод о «Т. с.» В. Наиболее известна из них флуктуационная гипотеза Л. Больцмана
(1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Современной космологией установлено, что ошибочен не только вывод о «Т. с.» В., но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физические факторы и прежде всего тяготение
.
С учётом тяготения однородное изотермическое распределение вещества вовсе не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермическому состоянию Вселенной — к «Т. с.» В. Вселенная всегда нестатична и непрерывно эволюционирует. Лит.:
Зельдович Я. Б., Новиков И. Д., Строение и эволюция Вселенной, М.,1975. И. Д. Новиков.
Тепловая труба
Теплова'я труба',
теплопередающее устройство, способное передавать большие тепловые мощности при малых градиентах температуры. Т. т. представляет собой герметизированную конструкцию (трубу), частично заполненную жидким теплоносителем
(рис.
). В нагреваемой части Т. т. (в зоне нагрева, или испарения) жидкий теплоноситель испаряется с поглощением теплоты, а в охлаждаемой части Т. т. (в зоне охлаждения, или конденсации) пар, перетекающий из зоны испарения, конденсируется с выделением теплоты. Движение пара от зоны испарения к зоне конденсации происходит за счёт разности давлений насыщенного пара, определяемой разностью температур в зонах испарения и конденсации. Возвращение жидкости в зону испарения осуществляется либо за счёт внешних воздействий (например, силы тяжести), либо под действием капиллярной разности давлений по капиллярной структуре (фитилю), расположенной внутри Т. т. (чаще всего на её стенках). В связи с тем, что Т. т. с капиллярной структурой для возврата жидкости могут работать независимо от ориентации в поле тяжести и в невесомости, наиболее распространён именно этот тип Т. т. Эффективная теплопроводность Т. т. (отношение плотности теплового потока
через Т. т. к падению температуры на единицу длины трубы) в десятки тысяч раз больше, чем теплопроводность Cu, Ag или Al, и достигает ~
107вт/м К
).
Малый вес, высокая надёжность и автономность работы Т. т., большая эффективная теплопроводность, возможность использования в качестве термостатирующего устройства обусловили применение Т. т. в энергетике, химической технологии, космической технике, электронике и ряде других областей техники. Лит.:
Елисеев В. Б.. Сергеев Д. И.. Что такое тепловая труба?. М., 1971; Тепловые трубы. Сб., пер. с англ. и нем.. под ред. Э. Э. Шпильрайна. М.. 1972. С. П. Малышенко.