Читаем Большая Советская Энциклопедия (ТЕ) полностью

  А. Н. Таращан.

Термомагнитные сплавы

Термомагни'тные спла'вы, ферромагнитные сплавы, имеющие резко выраженную температурную зависимость намагниченности в заданном магнитном поле. Это свойство проявляется в определённом интервале температур вблизи Кюри точек , значения которых у Т. с. находятся между 0 и 200 °С. Известны 3 основные группы Т. с.: медно-никелевые (30—40% Cu), железо-никелевые (30% Ni) и железо-никелевые (30—38% Ni), легированные Cr (до 14%), Al (до 1,5%), Mn (до 2%). Типичные представители этих групп: кальмаллои , термаллои , компенсаторы. Медно-никелевые сплавы могут применяться в области температур от -50 до 80 °С; их недостаток — низкие значения намагниченности. Железо-никелевые сплавы предназначены для работы от 20 до 80 °С; при отрицательных температурах в этих сплавах возможно изменение кристаллографической структуры, сопровождающееся повышением точки Кюри и снижением температурного коэффициента намагниченности. Наибольшее распространение получили легированные железо-никелевые сплавы. В зависимости от состава они могут применяться в узкой (от -20 до 35 °С) либо широкой (от -60 до 170 °С) температурных областях. На базе легированных железо-никелевых сплавов созданы многослойные термомагнитные материалы, имеющие лучшие магнитные характеристики, чем сплавы. Основная область применения Т. с. — термокомпенсаторы и терморегуляторы магнитного потока в измерительных приборах (гальванометров, счётчиков электроэнергии, спидометров и т. п.), выполняемые в виде шунтов, ответвляющих на себя часть потока постоянного магнита. Принцип действия такого шунта основан на том, что с повышением температуры резко уменьшается его намагниченность, вследствие чего увеличивается поток в зазоре магнита. Благодаря этому компенсируется погрешность прибора, связанная с температурными изменениями индукции магнита, электрического сопротивления измерительной обмотки, жёсткости противодействующих пружин. Т. с. применяются также в реле, момент срабатывания которых зависит от температуры.

  Лит.: Займовский А. С., Чудневская Л. А., Магнитные материалы, М.— Л., 1957, с. 142—44; Прецизионные сплавы. Справочник, под ред. Б. В. Молотилова, М., 1974, с. 156—64.

  А. И. Зусман.

Термомагнитные явления

Термомагни'тные явле'ния, группа явлений, связанных с влиянием магнитного поля на электрические и тепловые свойства проводников и полупроводников, в которых существует градиент температуры. Т. я., как и гальваномагнитные явления , обусловлены воздействием магнитного поля на движущиеся частицы, несущие электрический заряд (электроны в проводниках, электроны и дырки в полупроводниках). Магнитное поле искривляет траекторию движущихся зарядов и, в частности, отклоняет текущий по телу электрический ток и связанный с переносом частиц поток теплоты от первоначального направления (см. Лоренца сила ). В результате появляются составляющие электрического тока и теплового потока в направлении, перпендикулярном магнитному полю, и наблюдаются др. явления.

  Т. я. можно классифицировать, рассматривая взаимное расположение векторов: напряжённости магнитного поля Н, температурного градиента ÑТ в проводнике, плотности W теплового потока и вектора N, параллельного направлению, в котором измеряется явление. Т. я., измеряемые в направлении, перпендикулярном или параллельном первичному температурному градиенту, называются соответственно поперечными и продольными. Характерным примером Т. я. может служить возникновение в проводнике (металле) или полупроводнике электрического поля Е, если в теле имеется градиент температуры и в перпендикулярном к нему направлении накладывается магнитное поле Н (Нернста — Эттингсхаузена эффект ). Возникшее поле Е имеет как продольную, так и поперечную составляющие. К Т. я. относится также Риги — Ледюка эффект и ряд др. явлений.

  Лит.: Блатт Ф. Д., Теория подвижности электронов в твердых телах, пер. с англ., М.—Л., 1963; Цидильковский И. М., Термомагнитные явления в полупроводниках, М., 1960.

Термометр

Термо'метр (от термо ... и... метр ), прибор для измерения температуры посредством контакта с исследуемой средой. Применение Т. исключительно разнообразно: существуют Т. бытового употребления (комнатные, для воздуха и воды, медицинские и др.); Т. технического применения, высокоточные Т. для исследовательских и метрологических работ и др. Действие Т. основано на таких физических свойствах, как тепловое расширение жидкостей, газов и твёрдых тел; на температурной зависимости давления газа или насыщенных паров, электрического сопротивления, термоэлектродвижущей силы, магнитной восприимчивости парамагнетика и т. д. (см. Термометрия ).

Перейти на страницу:

Похожие книги

100 великих некрополей
100 великих некрополей

Человеческая жизнь коротка, и даже великие мудрецы не всегда могли понять, что же скрывается за вратами вечности: тайна Божественного замысла, райские кущи или адские муки? Простым смертным и вовсе не под силу было разгадать эту загадку. Однако во все времена одним из мерил духовности и нравственности народов служило их отношение к умершим. Некрополи — мемориальные сооружения прошлых эпох — занимают одно из важнейших мест среди памятников материальной культуры. Некоторые из них — это не только выдающиеся произведения архитектуры и искусства, но и важные для исследователей исторические источники.Новая книга из серии «100 великих» содержит сведения о наиболее выдающихся некрополях всех времен и народов от египетских пирамид и зороастрийских «башен молчания» до Александро-Невской лавры, Сент-Женевьев-дю-Буа и мавзолея Мао Цзэдуна.

Надежда Алексеевна Ионина , Надежда Ионина

Энциклопедии / Словари и Энциклопедии