У. Томсон
(Кельвин) вывел термодинамическое соотношение между коэффициентом Пельтье и Зеебека (a
), которое является частным проявлением симметрии кинетического коэффициента (см. Онсагера теорема
): П = aТ,
где Т —
абсолютная температура, и предсказал существование третьего Т. я. — Томсона эффекта
.
Оно заключается в следующем: если вдоль проводника с током существует перепад температуры, то в дополнение к теплоте Джоуля в объёме проводника выделяется или поглощается, в зависимости от направления тока, дополнительное количество теплоты Q
t
(теплота Томсона): Qt
= t
(T
2
— T
1
) lt,
где t — коэффициент Томсона, зависящий от природы материала. Согласно теории Томсона, удельная термоэдс пары проводников связана с их коэффициентом Томсона соотношением: da/dT=
(t
1
— t
2
)/ Т.
Эффект Зеебека объясняется тем, что средняя энергия электронов проводимости зависит от природы проводника и по-разному растет с температурой. Если вдоль проводника существует градиент температур, то электроны на горячем конце приобретают более высокие энергии и скорости, чем на холодном; в полупроводниках в дополнение к этому концентрация электронов проводимости растет с температурой. В результате возникает поток электронов от горячего конца к холодному и на холодном конце накапливается отрицательный заряд, а на горячем остаётся нескомпенсированный положительный заряд. Процесс накопления заряда продолжается до тех пор, пока возникшая разность потенциалов не вызовет поток электронов в обратном направлении, равный первичному, благодаря чему установится равновесие. Алгебраическая сумма таких разностей потенциалов в цепи создаёт одну из составляющих термоэдс, которую называют объёмной.
Вторая (контактная) составляющая — следствие температурной зависимости контактной разности потенциалов
.
Если оба контакта термоэлемента находятся при одной и той же температуре, то контактная и объёмная термоэдс исчезают. Вклад в термоэдс даёт также эффект увлечения электронов фононами. Если в твёрдом теле существует градиент температуры, то число фононов
,
движущихся от горячего конца к холодному, будет больше, чем в обратном направлении. В результате столкновений с электронами фонолы могут увлекать за собой последние и на холодном конце образца будет накапливаться отрицательный заряд (на горячем — положительный) до тех пор, пока возникшая разность потенциалов не уравновесит эффект увлечения; эта разность потенциалов и представляет собой 3-ю составляющую термоэдс, которая при низких температурах может быть в десятки и сотни раз больше рассмотренных выше. В магнетиках наблюдается дополнительная составляющая термоэдс, обусловленная эффектом увлечения электронов магнонами
.
В металлах
концентрация электронов проводимости велика и не зависит от температуры. Энергия электронов также почти не зависит от температуры, поэтому термоэдс металлов очень мала. Сравнительно больших значений достигает термоэдс в полуметаллах
и их сплавах, где концентрация носителей значительно меньше и зависит от температуры, а также в некоторых переходных металлах и их сплавах (например, в сплавах Pd с Ag термоэдс достигает 86 мкв/
°С).
В последнем случае концентрация электронов велика. Однако термоэдс велика из-за того, что средняя энергия электронов проводимости сильно отличается от энергии Ферми. Иногда быстрые электроны обладают меньшей диффузионной способностью, чем медленные, и термоэдс в соответствии с этим меняет знак. Величина и знак термоэдс зависят также от формы поверхности Ферми. В металлах и сплавах со сложной Ферми поверхностью
различные участки последней могут давать в термоэдс вклады противоположного знака и термоэдс может быть равна или близка к нулю. Знак термоэдс некоторых металлов меняется на противоположный при низких температурах в результате увлечения электронов фононами. В дырочных полупроводниках
на холодном контакте скапливаются дырки, а на горячем — остаётся нескомпенсированный отрицательный заряд (если только аномальный механизм рассеяния или эффект увлечения не приводят к перемене знака термоэдс). В термоэлементе, состоящем из дырочного и электронного полупроводников, термоэдс складываются. В полупроводниках со смешанной проводимостью к холодному контакту диффундируют и электроны и дырки, и их заряды взаимно компенсируются. Если концентрации и подвижности электронов и дырок равны, то термоэдс равна нулю.