Окисная плёнка не защищает Т. в жидком состоянии от дальнейшего взаимодействия с кислородом (в отличие, например, от алюминия), и поэтому его плавка и сварка должны проводиться в вакууме, в атмосфере нейтрального газа или под флюсом. Т. обладает способностью поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практического использования; при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре с небольшой скоростью, которая значительно возрастает при 400 °С и выше. Растворимость водорода в Т. является обратимой, и этот газ можно удалить почти полностью отжигом в вакууме. С азотом Т. реагирует при температуре выше 700 °С, причём получаются нитриды типа TiN; в виде тонкого порошка или проволоки Т. может гореть в атмосфере азота. Скорость диффузии азота и кислорода в Т. значительно ниже, чем водорода. Получаемый в результате взаимодействия с этими газами слой отличается повышенными твёрдостью и хрупкостью и должен удаляться с поверхности титановых изделий путём травления или механической обработки. Т. энергично взаимодействует с сухими галогенами (см.
Металл устойчив в азотной кислоте всех концентраций (за исключением красной дымящейся, вызывающей коррозионное растрескивание Т., причём реакция иногда идёт со взрывом), в слабых растворах серной кислоты (до 5% по массе). Соляная, плавиковая, концентрированная серная, а также горячие органические кислоты: щавелевая, муравьиная и трихлоруксусная реагируют с Т.
Т. коррозионно устойчив в атмосферном воздухе, морской воде и морской атмосфере, во влажном хлоре, хлорной воде, горячих и холодных растворах хлоридов, в различных технологических растворах и реагентах, применяемых в химической, нефтяной, бумагоделательной и др. отраслях промышленности, а также в гидрометаллургии. Т. образует с С, В, Se, Si металлоподобные соединения, отличающиеся тугоплавкостью и высокой твёрдостью. Карбид TiG (
Получение. Наиболее распространённым методом получения металлического Т. является магниетермический метод, то есть восстановление тетрахлорида Т. металлическим магнием (реже — натрием):
TiCl4
+ 2Mg = Ti + 2MgCl2 .В обоих случаях исходным сырьём служат окисные руды Т. — рутил, ильменит и др. В случае руд типа ильменитов Т. в форме шлака отделяется от железа путём плавки в электропечах. Шлак (так же, как рутил) подвергают хлорированию в присутствии углерода с образованием тетрахлорида Т., который после очистки поступает в восстановительный реактор с нейтральной атмосферой.
Т. по этому процессу получается в губчатом виде и после измельчения переплавляется в вакуумных дуговых печах на слитки с введением легирующих добавок, если требуется получить сплав. Магниетермический метод позволяет создать крупное промышленное производство Т. с замкнутым технологическим циклом, так как образующийся при восстановлении побочный продукт — хлорид магния направляется на электролиз для получения магния и хлора.
В ряде случаев для производства изделий из Т. и его сплавов выгодно применять методы порошковой металлургии. Для получения особо тонких порошков (например, для радиоэлектроники) можно использовать восстановление двуокиси Т. гидридом кальция.
Мировое производство металлического Т. развивалось весьма быстро: около 2