Читаем Большая Советская Энциклопедия (ТО) полностью

  Отображение f : X ® Y топологическое пространства Х в топологическое пространство Y называют непрерывным отображением, если для любого открытого множества V Ì Y множество f—1 (V ) открыто в X . Непрерывное отображение называют гомеоморфизмом, если оно взаимно однозначно и обратное отображение f—1 : Y ® X непрерывно. Такое отображение устанавливает взаимно однозначное соответствие между открытыми множествами топологических пространств Х и Y , перестановочное с операциями объединения и пересечения множеств. Поэтому все топологические свойства (то есть свойства, формулируемые в терминах открытых множеств) этих пространств одни и те же, и с топологической точки зрения гомеоморфные топологические пространства (то есть пространства, для которых существует хотя бы один гомеоморфизм Х ® Y ) следует считать одинаковыми (подобно тому как в евклидовой геометрии одинаковыми считаются фигуры, которые можно совместить движением). Например, гомеоморфны («топологически одинаковы») окружность и граница квадрата, шестиугольника и т.п. Вообще любые две простые (не имеющие двойных точек) замкнутые линии гомеоморфны. Напротив, окружность не гомеоморфна прямой (ибо удаление точки не нарушает связности окружности, но нарушает связность прямой; по той же причине прямая не гомеоморфна плоскости, а окружность не гомеоморфна «восьмёрке»). Окружность не гомеоморфна также и плоскости (выкиньте не одну, а две точки).

  Пусть {Х a } — произвольное семейство топологических пространств. Рассмотрим множество Х всех семейств вида {х a }, где x a  X a (прямое произведение множеств X a ). Для любого a формула определяет некоторое отображение  (называется проекцией). Вообще говоря, в Х можно ввести много топологических структур, относительно которых все отображения p a непрерывны. Среди этих структур существует наименьшая (то есть содержащаяся в любой такой структуре). Снабженное этой топологической структурой множество Х называется топологическим произведением топологических пространств Х a и обозначается символом ПХ a (а в случае конечного числа сомножителей — символом X1 ´ ... ´ Xn ). В явном виде открытые множества пространства Х можно описать как объединения конечных пересечений всех множеств вида , где U a открыто в X a . Топологическое пространство Х обладает следующим замечательным свойством универсальности, однозначно (с точностью до гомеоморфизма) его характеризующим: для любого семейства непрерывных отображений f a : Y ® X a существует единственное непрерывное отображение f : Y ® X , для которого    при всех a. Пространство  является топологическим произведением n экземпляров числовой прямой. Одной из важнейших теорем общей Т. является утверждение о том, что топологическое произведение компактных топологических пространств компактно.

  Если Х — топологическое пространство, а Y — произвольное множество и если задано отображение p : X ® Y пространства Х на множество Y (например, если Y является фактормножеством Х по некоторому отношению эквивалентности, а p представляет собой естественную проекцию, сопоставляющую с каждым элементом х Î Х его класс эквивалентности), то можно ставить вопрос о введении в Y топологической структуры, относительно которой отображение p непрерывно. Наиболее «богатую» (открытыми множествами) такую структуру получают, полагая открытыми множествами в Y все те множества V Ì Y, для которых множество f‑1 (V ) Ì Х открыто в X . Снабженное этой топологической структурой множество Y называется факторпространством топологического пространства Х (по отношению к p ). Оно обладает тем свойством, что произвольное отображение f : Y ® Z тогда и только тогда непрерывно, когда непрерывно отображение  : X ® Z. Непрерывное отображение p : X ® Y называется факторным, если топологическое пространство Y является по отношению к p факторпространством топологического пространства X . Непрерывное отображение p : X ® Y называется открытым, если для любого открытого множества U Ì Х множество p(U) открыто в Y , и замкнутым, если для любого замкнутого множества F Ì Х множество p(F) замкнуто в Y . Как открытые, так и замкнутые непрерывные отображения f : Х ® Y , для которых f(X) = Y , являются факторными.

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии