Павел Михайлович Т. [15(27).12.1832, Москва, — 4(16).12.1898, там же], русский художественный деятель, основатель Третьяковской галереи
, «почётный вольный общник» (с 1868) и действительный член (с 1893) петербургской АХ. Разделял идеи русских просветителей. С 1856 начал собирать произведения русского искусства, преимущественно демократического направления; оказал огромную поддержку передвижникам
.
Рассматривал свою деятельность как национальное дело. В 1892 передал своё собрание в дар г. Москве. Сергей Михайлович Т. [19.2(3.3).1834, Москва, — 25.7(6.8).1892, Петергоф, ныне Петродворец], собиратель живописи, деятель городского самоуправления, в 1877—81 московский городской голова. Был активным деятелем Московского художественного общества, Московского училища живописи, Русского музыкального общества. Своё собрание западноевропейской живописи завещал в 1892 через брата Москве. Первоначально оно находилось в Третьяковской галерее, в 1925 было передано в Музей новой западной живописи, ныне — в Эрмитаже (Ленинград) и Музее изобразительных искусств им. А. С. Пушкина (Москва).
Лит.:
Крамской И. Н., Третьяков П. М., Переписка, 1869—1887, М., 1953; Боткина А. П., П. М. Третьяков в жизни и искусстве, 2 изд., М., 1960; Мудрогель Н. А., Пятьдесят восемь лет в Третьяковской галерее. Воспоминания, 2 изд., Л., 1966.П. М. Третьяков. Портрет работы И. Н. Крамского. 1876. Третьяковская галерея. Москва.
Треугольник (в геометрии)
Треуго'льник
прямолинейный, часть плоскости, ограниченная тремя отрезками прямых (стороны Т.), имеющими попарно по одному общему концу (вершины Т.). Т., у которого длины всех сторон равны, называется равносторонним, или правильным (рис.
, 1), Т. с двумя равными сторонами — равнобедренным (рис.
, 2).
Т. называется остроугольным (рис.
, 3), если все углы его острые; прямоугольным (рис.
, 4) — если один из его углов прямой; тупоугольным (рис.
, 5) — если один из его углов тупой. Более одного прямого или тупого угла Т. иметь не может, так как сумма всех трёх углов равна двум прямым углам (180° или, в радианах, p). Площадь Т. равна ah/2
, где а
— любая из сторон Т., принимаемая за его основание, a h
— соответствующая высота (рис.
, 6). Стороны Т. подчинены условию: длина каждой из них меньше суммы и больше разности длин двух других сторон. Два Т. конгруэнтны (равны), если они имеют равными (попарно) все стороны или две стороны и угол между ними, или сторону и два прилежащих угла. Числовые соотношения между углами и сторонами Т. изучаются в тригонометрии
. О Т. на сфере см. Сферическая геометрия
.Сферическая тригонометрия
. Рис. к ст. Треугольник.
Треугольник (муз. инструмент)
Треуго'льник
, ударный музыкальный инструмент: стальной прут, согнутый в виде незамкнутого треугольника. Т. подвешивают (на ремешке или струне) и извлекают звук ударами металлического стерженька. Звук инструмента яркий, звенящий. Применяется в оркестрах и инструментальных ансамблях. Треугольник (созвездие)
Треуго'льник
(лат. Triangulum), созвездие Северного полушария неба; наиболее яркие звёзды 3,0 и 3,4 визуальной звёздной величины
. Наилучшие условия для наблюдений — в октябре, видно на всей территории СССР. См. Звёздное небо
. Треугольником и звездой соединения
Треуго'льником и звездо'й соедине'ния
в электротехнике, способы соединения элементов электрических цепей
, при которых ветви цепи образуют соответственно треугольник и трехлучевую звезду (см. рис.
). Наибольшее распространение Т. и з. с. получили в трёхфазных цепях
. Выбор одного из этих способов производится в соответствии с условиями работы цепи. Так, например, в случае соединения обмоток генератора звездой требуется меньшее число витков в обмотках, но большее сечение проводов, чем в случае их соединения треугольником, и поэтому соединение звездой более выгодно при высоких напряжениях (обмотки могут быть рассчитаны на напряжения, в раз меньшие, чем линейные); при больших токах нагрузки генератора предпочтительнее соединение его обмоток треугольником. В практике электротехнических расчётов (в целях их упрощения) часто прибегают к эквивалентной (без изменения режима работы внешней цепи) замене соединения элементов цепи звездой их соединением треугольником и наоборот. При таком преобразовании параметры элементов эквивалентной схемы определяются по известным расчётным формулам.
Лит.:
Основы теории цепей, 3 изд., М.—Л., 1965; Теория линейных электрических цепей, М., 1973. М. А. Маричев.
Соединения элементов электрических цепей треугольником (а) и звездой (б): Z — полное сопротивление участка цепи; и — комплексные токи и эдс.
Трефолев Леонид Николаевич