Т. возникает вследствие гидродинамической неустойчивости ламинарного течения, которое теряет устойчивость и превращается в турбулентное, когда так называемое Рейнольдса число Re = l
u/n превзойдёт некоторое критическое значение Rekp(l и u — характерные длина и скорость в рассматриваемом течении, n — кинематический коэффициент вязкости). По экспериментальным данным, в прямых круглых трубах при наибольшей возможной степени возмущённости течения у входа в трубу Rekp » 2300 (здесь l — диаметр трубы, u — средняя по сечению скорость). Уменьшая степень начальной возмущённости течения, можно добиться затягивания ламинарного режима до значительно больших Rekp, например в трубах до Rekp » 50 000. Аналогичные результаты получены для возникновения Т. в пограничном слое.
Возникновение Т. при обтекании твёрдых тел может проявляться не только в виде турбулизации пограничного слоя, но и в виде образования турбулентного следа за телом в результате отрыва пограничного слоя от его поверхности. Турбулизация пограничного слоя до точки отрыва приводит к резкому уменьшению полного коэффициента сопротивления тела. Т. может возникнуть и вдали от твёрдых стенок, как при потере устойчивости поверхности разрыва скорости (например, образующейся при отрыве пограничного слоя или являющейся границей затопленной струи или поверхностью разрыва плотности), так и при потере устойчивости распределения плотностей слоев жидкости в поле тяжести, то есть при возникновении конвекции. Дж. У. Рэлей установил, что критерий возникновения конвекции в слое жидкости толщиной h между двумя плоскостями с разностью температур dT имеет вид Ra = gbh3dT/nc, где g — ускорение силы тяжести, b — коэффициент теплового расширения жидкости, c — коэффициент её температуропроводности. Критическое число Рэлея Rakpимеет значение около 1100—1700. Вследствие чрезвычайной нерегулярности гидродинамических полей турбулентных течений применяется статистическое описание Т.: гидродинамические поля трактуются как случайные функции от точек пространства и времени, и изучаются распределения вероятностей для значений этих функций на конечных наборах таких точек. Наибольший практический интерес представляют простейшие характеристики этих распределений: средние значения и вторые моменты гидродинамических полей, в том числе дисперсии компонент скорости (где пульсации скорости, а чёрточка наверху — символ осреднения); компоненты турбулентного потока количества движения (так называемое напряжения Рейнольдса) и турбулентного потока тепла
(r — плотность, с — удельная теплоёмкость, Т — температура). Статистические моменты гидродинамических полей турбулентного потока должны удовлетворять некоторым уравнениям (вытекающим из уравнений гидродинамики), простейшие из которых — так называемые уравнения Рейнольдса, получаются непосредственным осреднением уравнений гидродинамики. Однако точного решения их до сих пор не найдено, поэтому используются различные приближённые методы. Основной вклад в передачу через турбулентную среду количества движения и тепла вносят крупномасштабные компоненты Т. (масштабы которых сравнимы с масштабами течения в целом); поэтому их описание — основа расчётов сопротивления и теплообмена при обтекании твёрдых тел жидкостью или газом. Для этой цели построен ряд так называемых полуэмпирических теорий Т., в которых используется аналогия между турбулентным и молекулярным переносом, вводятся понятия пути перемешивания, интенсивности Т., коэффициента турбулентной вязкости и теплопроводности и принимаются гипотезы о наличии линейных соотношений между напряжениями Рейнольдса и средними скоростями деформации, турбулентным потоком тепла и средним градиентом температуры. Такова, например, применяемая для плоскопараллельного осреднённого движения формула Буссинеска t = Ad
u/dy с коэффициентом турбулентного перемешивания (турбулентной вязкости) А, который, в отличие от коэффициента молекулярной вязкости, уже не является физической постоянной жидкости, а зависит от характера осреднённого движения. На основании полуэмпирической теории Прандтля можно принять , где путь перемешивания l — турбулентный аналог длины свободного пробега молекул. Большую роль в полуэмпирических теориях играют гипотезы подобия (см. Подобия теория
). В частности, они служат основой полуэмпирической теории Кармана, по которой путь перемешивания в плоскопараллельном потоке имеет вид l = — cu’/u’’, где u = u(у) — скорость течения, а c — постоянная. А. Н. Колмогоров предложил использовать в полуэмпирических теориях гипотезу подобия, по которой характеристики Т. выражаются через её интенсивность b и масштаб l (например, скорость диссипации энергии e ~ b3/ l). Одним из важнейших достижений полуэмпирической теории Т. является установление универсального (по числу Рейнольдса, при больших Re) логарифмического закона для профиля скорости в трубах, каналах и пограничном слое: ,